SEGUNDO SIMPOSIO INTERNACIONAL EN EPIDERMOLISIS BULOSA 17 Y 18 DE NOVIEMBRE 2005, SANTIAGO DE CHILE - PowerPoint PPT Presentation

1 / 34
About This Presentation
Title:

SEGUNDO SIMPOSIO INTERNACIONAL EN EPIDERMOLISIS BULOSA 17 Y 18 DE NOVIEMBRE 2005, SANTIAGO DE CHILE

Description:

Pobre ingesta de He???? Mala Absorci n??? P rdidas Aumentadas? ... parte dado por una pobre ingesta nutricional y probablemente por una absorci n ... – PowerPoint PPT presentation

Number of Views:51
Avg rating:3.0/5.0
Slides: 35
Provided by: debra54
Category:

less

Transcript and Presenter's Notes

Title: SEGUNDO SIMPOSIO INTERNACIONAL EN EPIDERMOLISIS BULOSA 17 Y 18 DE NOVIEMBRE 2005, SANTIAGO DE CHILE


1
SEGUNDO SIMPOSIO INTERNACIONAL EN EPIDERMOLISIS
BULOSA17 Y 18 DE NOVIEMBRE 2005, SANTIAGO DE
CHILE
  • EPIDERMOLISIS BULOSA
  • Y
  • ANEMIA
  • DR FRANCIS PALISSON
  • DIRECTOR MÉDICO DEBRA CHILE

2
(No Transcript)
3
(No Transcript)
4
CAT AND BIRD 1928 PAUL KLEE
5
Qué es Anemia?
  • Hb lt 13 gr/dl
  • Palidez
  • Fatiga
  • Disnea de ejercicio
  • Taquicardia de Reposo
  • Inadecuado Transporte de Oxígeno
  • Retardo en la cicatrización de heridas
  • Retardo del crecimiento

6
Anemia
7 nm
Deficit de He
Anemia por Enf Crónicas
Anemia Megaloblástica Por deficit de Vit b12
7
Deficit de Folato???? Enfermedades Crónicas
8
Deficiencies of Vitamins and Minerals in RDEB
cont.
9
EPIDERMOLISIS BULOSA
  • ALTERACIONES DE LABORATORIO
  • ANEMIA MICROCÍTICA HIPOCRÓMICA
  • FIERRO SÉRICO DISMINUIDO
  • ERITROPOYETINA AUMENTADA
  • TROMBOCITOSIS
  • VHS AUMENTADA
  • PCR AUMENTADA
  • HIPOALBUMINEMIA

10
Pobre ingesta de He???? Mala Absorción??? Pérdidas
Aumentadas???
11
EPIDERMOLISIS BULOSA CHILE 1982-2003
DG CLÍNICO
124 CASOS
IHQME y BIOL MOL
49
2003
12
COMPROMISO X ANEMIA
13
EPIDERMOLISIS BULOSA 1982-2004
HB lt a 12 gr/dl EBS 0 de 142 EBJ 3 de 142 EBD 28
de 142
DG CLÍNICO
167 CASOS
IHQME y BIOL MOL
84
2005
14
EPIDERMOLISIS BULOSA y ANEMIA
  • No conocemos sus causas íntimas, asumimos que
    existe una anemia microcítica hipocrómica por
    pérdidas aumentadas
  • Existe un estado inflamatorio crónico que
    mantiene la
  • médula ósea frenada
  • Los pacientes tienen estados nutricionales
    desmejorados. En parte dado por una pobre ingesta
    nutricional y probablemente por una absorción de
    nutrientes disminuída.

15
Metabolismo del Hierro
Finch J, Anemia y Metabolismo del Hierro, En
Hematología Oncología, Ed. Panamericana, 2001
16
Metabolismo del Hierro
17
EVIDENCIAS DE LA LITERATURA
  • Correction of the anemia of epidermolysis bullosa
    with intravenous iron and erythropoietin
  • Fridge, Jacqueline L. Vichinsky, Elliott P. MD
  • n 5 pacientes

J Pediatr 1998132871-3
18
PROTOCOLO VENOFER
  • Pacientes con criterios de entrada
  • n10
  • Pacientes que abandonaron el estudio
  • n 5
  • Pacientes que recibieron fierro EV durante 6
    semanas y se controlaron una vez x sem x 20 sem
  • n 5

19
Hemoglobina post Venofer x 6 sem
SE IDENTIFICAN 2 GRUPOS EN TIEMPO O COTA SUPERIOR
PROMEDIO DE HB 11 EL GRUPO 1 QUE PARTE EN 9 HB
LLEGA A 11 EN 5 SEM EL GRUPO 2 PARTE EN 8 Y SE
DEMORA 11 EN SEM
20
PCR post Venofer x 6 sem
21
Ferritina post Venofer x 6 sem
22
Eritropoietina post Venofer x 6 sem
23
Plaquetas post Venofer por 6 sem
24
ANEMIA DE EB
  • ANEMIA MICROCÍTICA HIPOCROMA POR DEFICIT DE HE
  • ANEMIA POR ENFERMEDAD INFLAMATORIA CRÓNICA
  • ANEMIA POR DEFICIT NUTRICIONAL
  • OTROS

25
Equipo de Trabajo
  • PAULETTE CONGETT, PhD
  • ALUMNOS DE MEDICINA UDD
  • MATIAS DONOSO
  • CAMILA LETELIER
  • FERNANDO MANRÍQUEZ
  • FRANCIS PALISSON

26
www.debrachile.cl debrachile_at_mi.cl Muchas
gracias!
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
  • Figure 1  Distribution of iron within the body.
      The normal distribution of iron within the body
    is shown. Adults typically have 35 g in total.
    About 0.52 mg of dietary iron is absorbed each
    day through the proximal small intestine. This
    intake is balanced by loss of a similar amount of
    iron, through blood loss and the sloughing of
    skin and mucosal cells. Most iron is found in the
    erythroid bone marrow and in mature erythrocytes,
    contained within the haem moiety of haemoglobin.
    Iron for new red-blood-cell synthesis is
    primarily supplied by reticuloendothelial
    macrophages, which recycle iron from old red
    blood cells. Circulating iron is bound to
    transferrin. Around 0.1 of the total body iron
    is found in this transit compartment. Transferrin
    delivers iron to developing erythroid precursors,
    as well as to other tissues of the body. Stored
    iron is primarily found in the hepatocytes of the
    liver. The distribution of iron is altered in
    response to pregnancy, iron deficiency and iron
    overload. (TF, transferrin.)

31
(No Transcript)
32
  • Figure 2  The transferrin cycle.  
    HOLOTRANSFERRIN (HOLO-TF) binds to transferrin
    receptors (TFR) on the cell surface. The
    complexes localize to clathrin-coated pits, which
    invaginate to initiate endocytosis. Specialized
    endosomes form, and become acidified through the
    action of a proton pump. Acidification leads to
    protein conformational changes that release iron
    from transferrin. Acidification also enables
    proton-coupled iron transport out of the
    endosomes through the activity of the divalent
    metal transporter 1 protein (DMT1). Subsequently,
    APOTRANSFERRIN (APO-TF) and the transferrin
    receptor both return to the cell surface, where
    they dissociate at neutral pH. Both proteins
    participate in further rounds of iron delivery.
    In non-erythroid cells, iron is stored as
    ferritin and haemosiderin.

33
(No Transcript)
34
  • Figure 3  Cellular iron transport.   There are
    four cell types that have special functions in
    iron handling. a Duodenal enterocytes absorb
    iron from the diet. Non-haem iron is reduced by a
    ferric reductase in the brush border and is
    transported into the cell through the
    transmembrane iron transporter DMT1 (for divalent
    metal transporter 1). Some iron is stored within
    the cell in ferritin the remainder must pass
    through the basolateral membrane to reach the
    plasma. An iron exporter, ferroportin1, probably
    carries out basolateral iron transfer in
    cooperation with hephaestin, a possible
    ferroxidase. Hephaestin is homologous to the
    plasma multicopper oxidase ceruloplasmin (CP),
    and might have a function analogous to that of CP
    in iron export from other cells. Absorbed iron is
    loaded onto apotransferrin (APO-TF) to give
    holotransferrrin (HOLO-TF) through a mechanism
    that is not yet understood. b Erythroid
    precursors take up iron through the transferrin
    cycle, as described in Fig. 2. Erythroid cells
    probably have no iron-export mechanism
    essentially all iron in these cells is
    incorporated into haemoglobin. c Hepatocytes
    take up iron through at least two distinct
    pathways. They have a functional transferrin
    cycle and a transport system to take up
    non-transferrin-bound iron. The molecules
    important for non-transferrin-bound iron
    transport have not yet been identified.
    Hepatocytes store iron in ferritin. When iron is
    needed elsewhere in the body, they can release it
    to transferrin. The mechanism of hepatocyte
    export is not known, but it may involve
    ferroportin1. CP seems to aid in iron export from
    hepatocytes, but its precise function has not yet
    been defined. d Reticuloendothelial macrophages
    carry out iron recycling. They ingest senescent
    red blood cells (RBC) and lyse them in a
    phagolysosomal compartment. Haemoglobin is
    degraded and iron is liberated from haem. The
    enzyme haem oxygenase may participate in this
    process. Iron is then exported through the cell.
    The mechanism of macrophage iron export is not
    known, but may again involve ferroportin1 and CP,
    similar to iron export from hepatocytes. (TFR,
    transferrin receptor.)
Write a Comment
User Comments (0)
About PowerShow.com