Darlene Slattery, Ph'D' - PowerPoint PPT Presentation

1 / 39
About This Presentation
Title:

Darlene Slattery, Ph'D'

Description:

Na3AlH6 3 NaH Al 3/2 H2. Reversibility ... Zr superior for Na3AlH6 to NaH and Al ... NaH LiH NaAlH4 MA Na2LiAlH6 ... – PowerPoint PPT presentation

Number of Views:53
Avg rating:3.0/5.0
Slides: 40
Provided by: darlenek
Category:
Tags: darlene | nah | slattery

less

Transcript and Presenter's Notes

Title: Darlene Slattery, Ph'D'


1
Alanates as Hydrogen Storage Compounds
  • Darlene Slattery, Ph.D.
  • Florida Solar Energy Center
  • 1679 Clearlake Road
  • Cocoa, FL 32922
  • Phone (321) 638-1449 Fax (321) 638-1010

2
What are Alanates?
  • Complex Hydrides containing AlH4-
  • NaAlH4 LiAlH4 Mg(AlH4)2
  • Ca(AlH4)2 KAlH4 Ti(AlH4)4

3
  • Hydrogen atoms arranged tetrahedrally around Al
  • Hydrogens retain significant hydride or
    electron-rich character
  • 18 previously reported alanates
  • see hydpark.ca.sandia.gov

4
  • A.E. Finholt, A.C. Bond Jr., H.I. Schlesinger J.
    Am. Chem. Soc. 69, 1199-1203 (1947).
  • 4 LiH AlCl3 ether LiAlH4 3 LiCl
  • Also noted evidence for NaAlH4 and Ca(AlH4)
  • Wiberg (Angew.Chem., 65, 16 (1953)) reports
    Mg(AlH4)2

5
Improved Synthesis
  • E. Ashby, G. Brendel, H. Redman, Inorg. Chem., 2,
    499 (1963). Quant. Yield in THF, 140C, 5000 psi
    H2
  • NaH Al 3/2 H2 NaAlH4
  • Na Al 2 H2 NaAlH4
  • T. Dymova, N. Eliseeva, S. Bakum, Yu. M.
    Dergachev, Dokl. Akad. Nauk SSSR, 215, 256
    (1974). melt, 270-280C, 2539 psi
  • Na Al 2 H2 NaAlH4

6
Mechanical Alloying
  • T.N. Dymova, et al. Russ. J. Coord. Chem.,
    19(1993) 607.
  • MH AlH3 MAlH4
  • Ball to powder ratio, 201
  • Vibration time of 3 hours

7
Complex Hydride Uses
  • Reducing agent in synthetic chemistry
  • O
  • CH3C OH CH3CH2OH
  • FeCl3 3 LiAlH4 3 LiCl Fe.3Al 6 H2

8
Hydrogen Storage?
  • Hydride H2 Content
  • LiAlH4 10.5
  • NaAlH4 7.5
  • KAlH4 5.7
  • Be(AlH4)2 11.3
  • Mg(AlH4)2 9.3
  • Ca(AlH4)2 7.7
  • Ti(AlH4)4 9.3

9
Decomposition Reaction
  • NaAlH4 1/3 Na3AlH6 2/3 Al H2
  • Na3AlH6 3 NaH Al 3/2
    H2
  • Dymova, et al. described multi-step decomp. but
    practical reversibility not demonstrated prior to
    1995

10
Reversibility
  • B. Bogdanovic, M. Schwickardi, U.S. Patent
    6,106,801, 2000.
  • NaAlH4 Ti(OBu)4 Ti-NaAlH4
  • NaAlH4 TiCl4 Ti-NaAlH4

11
  • NaAlH4 1/3 Na3AlH6 2/3 Al H2
  • Na3AlH6 3 NaH Al 3/2
    H2

12
(No Transcript)
13
Advantages of Ti Doping
  • Reversibility
  • Reversible content of doped 3.1 - 4.2 wt
    undoped 0.5 0.8 wt
  • Improved H2 desorption rate
  • Higher cycle stability
  • Reduction in dehydriding T by 50 OC

14
C.M. Jensen et al., Int. J. Hydrogen Energy, 24
(1999) 461-465. Dry doped with Ti(OBu)4
15
J. Alloys and Compounds, 285 (1999) 119-122.
H/M wt.
temperature, oC
16
Zr as a Dopant
  • Zr inferior to Ti for NaAlH4 to Na3AlH6
  • Zr superior for Na3AlH6 to NaH and Al
  • Doping with both Zr and Ti improves overall
    dehydriding reaction

17
Difficulties Resulting from Doping Procedures
  • Use of alkoxides contaminates desorbed H2
  • Weight penalty
  • Oxygen from decomp. of alkoxide contaminates
    active material
  • K.J. Gross, G.J. Thomas, C.M. Jensen, J. Alloys
    and Compounds, 330-332 (2002) 683-690.

18
Doping with TiCl4
  • TiCl4 4 NaAlH4 Ti 4 NaCl
    4 Al 8 H2
  • For every mole of TiCl4 added, 4 moles of NaAlH4
    consumed
  • 4 mole of NaCl contributing to weight

19
Doping with Ti
  • Ball milling of elemental Ti and NaAlH4
  • Kinetics of initial release better than ball
    milling alone
  • Reduction in decomp. T lt for TiCl4
  • Rehydrides at 120 oC and 800 psi
  • Subsequent dehydriding maintains content but
    kinetics poor

20
Doping with Carbon
  • A. Zaluska et al., J. Alloys and Compounds, 298
    (2000) 125-134.
  • NaAlH4 ball milled with 10 wt C
  • Kinetics improved over other dopants
  • Rate increases with subsequent cycles
  • Second step of decomp also affected but slower
    than first step
  • Rehydrog occurs under practical conditions

21
Nature of Catalyst
  • K.J. Gross, et al., J. Alloys and Compounds, 297
    (2000) 270-281.
  • Surface localized species
  • V.P. Balema et al., J. Alloys and Compounds, 329
    (2001), 108-114
  • Ti 4 Al Al3Ti Al

22
  • D. Sun et al., J. Alloys and Compounds, 337
    (2002) L8-L11.
  • Lattice Expansion Substitution

23
Other Alanates LiAlH4
  • Chen, et al., J. Phys. Chem. B, 105 (2001)
    11214-11220.
  • Showed that vibrating-mill technique produces
    Ti-doped LiAlH4 and Li3AlH6 powders with
    nanocrystallites
  • 1st decomp step at 100 oC releases 5.3 wt
  • 2nd decomp step at 135 oC releases 2.6 wt

24
LiAlH4 - continued
  • T.N. Dymova, et al., Russian Journal of
    Coordination Chem. 21(3) (1995)165-172.
  • Melting during decomp allows rearrangement from
    tetrahedral to octahedral
  • AlLi intermetallic compound forms

25
Other Alanates Na2LiAlH6
  • Huot, et al., J. Alloys and Compounds, 383 (1999)
    304-306.
  • NaH LiH NaAlH4 MA Na2LiAlH6
  • B. Bogdanovic, M. Schwickardi J. Alloys and
    Compounds, 253-254 (1997) 1-9.
  • LiAlH4 NaH toluene/H2 Na2LiAlH6

26
(No Transcript)
27
Other Alanates - KAlH4
  • Morioka, et al., J. Alloy and Compounds, 353
    (2003) 310-314.
  • KAlH4 300 1/3 K3AlH6 2/3 Al H2
  • K3AlH6 340 3 KH Al 3/2 H2
  • Reversible without a catalyst

28
Other Alanates Mg(AlH4)2
  • M. Fichtner, O. Fuhr J. Alloys and Compounds, 345
    (2002) 286-296.
  • 2 LiAlH4 MgX2 THF Mg(AlH4)2 2 LiX
  • where X Br or Cl
  • Forms as solvent adduct
  • M. Fichtner, et al., In press
  • Decomp. at 163 oC, rehydriding not studied

29
Mg(AlH4)2 Cont.
  • Dymova et al., Russian J. of Coordination Chem.
    25(5), (1999) 312-315
  • Does not form intermediate complex hydrides
  • Mg(AlH4)2 135-155 C MgH2 2 Al 3 H2
  • MgH2 2 Al 300 C 0.43 Al0.93 Mg0.07
    2.58 Al0.62Mg0.38 H2

30
Engineering Considerations
  • G. Sandrock, et al., J. Alloys and Compounds,
    330-332 (2002) 696-701
  • Contamination of resulting H2
  • Weight penalty from dopants
  • Self-heating exceeds m.p.
  • Volume changes lower than conventional
  • Desorption kinetics (down to r.t.)

31
  • Future Work Needed
  • B. Bogdanovic, G. Sandrock, MRS Bulletin, Sept.
    2002, 712-716.

32
ID and Mechanism of Ti Catalyst
  • XRD and microscopic analyses have failed
  • amorphous
  • too fine
  • part of alanate lattice

33
  • Optimization of Catalyst
  • Concentration on Ti, Zr, Fe, C
  • Is there something better
  • Can decomp of Na3AlH6 be improved

34
H2 Capacity and Cyclic Retention
  • Achieving full cyclic potential
  • H2 content to fixed amount of Al
  • More cyclic data needed
  • Additional techniques

35
Engineering Data
  • What configuration should be used for alanate
    beds
  • Thermal conductivities
  • Expansion behavior
  • Potential reactions with container materials
  • Need to quantify safety aspects

36
Thermodynamic Tailoring
  • Substitution in intermetallics
  • Li substituted for Na
  • Response to catalysis
  • Increasing plateau pressure w/o losing hydrogen
    capacity

37
Improved Synthesis
  • Only LiAlH4 available in industrial quantities
  • NaAlH4 expensive
  • Other alanates not commercially available
  • Best method for catalyzing

38
Other Complex Hydrides
  • Borohydrides, BH4-
  • Beryllium hydrides, BeH3-
  • Transition metal complex hydrides
  • FeH64-
  • PdH22-
  • PtH42-

39
Conclusions
  • Prior to Bogdanovics discovery, complex hydrides
    thought to be irreversible
  • NaAlH4 has been studied extensively
  • Data for other complex hydrides still limited
  • Much work remains before DOE goals are achieved
Write a Comment
User Comments (0)
About PowerShow.com