Thermal Photons in Strong Interactions - PowerPoint PPT Presentation

About This Presentation
Title:

Thermal Photons in Strong Interactions

Description:

Cold Quark Matter (qq) Cooper pairs, Dqq100MeV ... much excitement ahead: PHENIX, NA60, HADES, ALICE,... and theory! Additional Slides ... – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 31
Provided by: Rapp
Category:

less

Transcript and Presenter's Notes

Title: Thermal Photons in Strong Interactions


1
Thermal Photons in Strong Interactions
Ralf Rapp Cyclotron Inst. Physics Dept. Texas
AM University College Station, USA College
Station, 24.09.04
2
Introduction I E.M. Probes in Strong Interactions
  • g-ray spectroscopy of atomic nuclei collective
    phenomena
  • DIS off the nucleon - parton model, PDFs
    (high Q2)
  • - nonpert.
    structure of nucleon JLAB
  • thermal emission - compact stars (?!)
  • - heavy-ion
    collisions
  • What is the electromagnetic spectrum of
    matter?


3
Outline
1. Introduction 2. Thermal Photon Emission Rates
2.1 Generalities 2.2 Quark-Gluon Plasma
Complete LO 2.3 Hadronic Matter - Meson Gas
- Baryonic
Contributions
- Medium Effects 3. Relativistic Heavy-Ion
Collisions 3.1 Nonthermal Sources 3.2 Thermal
Evolution 3.3 Comparison to SPS and RHIC
Data 4. High-Density QCD Colorsuperconductor 5.
Conclusions
4
Introduction II Electromagnetic Emission Rates
E.M. Correlation Function
Im ?em(M,q)
Im ?em(q0q)
also e.m susceptibility (charge fluct) ?
?em(q00,q?0)
  • In URHICs
  • source strength depend. on T, mB, mp medium
    effects,
  • system evolution V(t), T(t), mB(t)
    transverse expansion,
  • nonthermal sources ee- Drell-Yan,
    open-charm g initial/
  • consistency!
    pre-equil.

5
2. Thermal Photon Radiation
2.1 Generalities
Emission Rate per 4-volume and 3-momentum
transverse photon selfenergy
many-body language
in-medium effects, resummations,
6
2.2 Quark-Gluon Plasma
Naïve Leading Order Processes q q (g) ? g
(q) ?
q
g
q
Kapusta etal 91, Baier etal 92
7
2.3.1 Hot Hadronic Matter p-r-a1 Gas
Chiral Lagrangian Axial/Vector-mesons, e.g. HLS
or MYM
  • (g0,m0,s,x) fit to mr,a1 , Gr,a1
  • D/S and G(a1?p?) not optimal

Song 93, Halasz etal 98,
8
2.3.1.b Hadronic Formfactors
  • quantitative analysis account for finite
    hadron size
  • improves a1 phenomenology
  • t-channel exchange gauge invariance nontrivial
    Kapusta etal 91
  • simplified approach
    Turbide,GaleRR 04

with
9
2.3.2 Further Meson Gas Sources
(i) Strangeness Contributions SU(3)F MYM
25 of pp???
40 of pr?p? !
(iii) Higher Resonances Ax-Vec a1,h1?pg,
Vec w,w,w?pg other p(1300)?pg
f1?rg , K1?Kg K?Kg
a2(1320)?pg
10
2.3.3 Baryonic Contributions
  • use in-medium r spectral funct
  • constrained by nucl. g-absorption

B,a1,K1...
N,p,K
11
2.3.3(b) Photon Rates from r Spectral
FunctionBaryons Meson-Resonances
  • baryonic contributions
  • dominant for q0lt1GeV
  • (CERES enhancement!)
  • also true at RHICLHC
  • at T180MeV, mB0

mB220MeV
12
2.3.4 HG Emission Rates Summary
  • w t-channel (very) important
  • at high energy
  • formfactor suppression (2-4)
  • strangeness significant
  • baryons at low energy

mB220MeV
Turbide,RRGale 04
13
2.3.5 In-Medium Effects
  • many-body approach encoded in vector-spectral
    function,

  • relevant below M , q0 1-1.5 GeV
  • dropping masses
  • large enhancement due
  • to increased phase space
  • SongFai 98, Alam etal 03
  • unless
  • vector coupling decreases
  • towards Tc (HLS, a?1)
  • HaradaYamawaki 01,
  • Halasz etal 98

14
2.3.6 Hadron Gas vs. QGP Emission
  • complete LO QGP rate
  • 2-3 above tree-level rate
  • in-med HG Meson-Ex
  • (bottom-up)
  • complete LO QGP
  • (top-down)
  • quark-hadron duality ?!

15
3. Relativistic Heavy-Ion Collisions
16
3.1 Nonthermal Sources
Initial hard production pp ? ?X
scaling with xT2pT /vs , power-law fit
Srivastava 01
17
3.2 Thermal Evolution QGP? Mix? HG
QGP initial conditions SPS
  • t01fm/c ? t00.5fm/c 2-3
  • sCdQGT3 dQG40 ? 32 2
  • pre-equilibrium?!

18
3.3 Comparison to Data I WA98 at SPS
Hydrodynamics QGP HG
Huovinen,RuuskanenRäsänen 02
  • T0260MeV, QGP-dominated
  • still true if pp?gX included

19
3.3 Comp. to Data II WA98 Low-qt Anomaly
Expanding Fireball Model
Turbide,RRGale04
  • current HG rate much below
  • 30 longer tFB ? 30 increase

20
3.3 Perspectives on Data III RHIC
Predictions for Central Au-Au
PHENIX Data
  • large pre-equilibrium yield
  • from parton cascade (no LPM)
  • thermal yields consistent
  • QGP undersat. small effect
  • consistent with initial only
  • disfavors parton cascade
  • not sensitive to thermal yet

21
4. Photon Emission from Colorsuperconductor
Cold Quark Matter ? (qq) Cooper pairs,
Dqq100MeV mq ms2 u-d-s symmetrically paired
(Color-Flavor-Locking) ? ciral symmetry broken,
Goldstone bosons, mp2 mq2 (10MeV)2
22
5. Conclusions
  • significant progress in E.-M. radiation from QCD
    matter
  • - QGP soft collinear enhancement ? complete
    leading order
  • - HG more complete (strangeness, baryons, w
    t-chan, FFs)
  • extrapolations into phase transition region
  • ? HG and QGP shine equally bright
  • deeper reason? lattice calculations?
  • phenomenology for URHICs compares favorably
  • with existing data
  • consistency with dileptons
  • much excitement ahead PHENIX, NA60, HADES,
    ALICE,
  • and
    theory!

23
  • Additional Slides

24
Photon Properties in Colorsuperconductors
25
(i) r(770)
2.2.2 1 Mesons
Constraints - branching ratios B,M?rN,rp - gN,
gA absorpt., pN?rN - QCD sum rules
26
2.2.4 In-Medium Baryons D(1232)
  • ? long history in nuclear physics ! ( pA , gA
    )
  • e.g. nuclear photoabsorption MD, GD up by
    20MeV
  • ? little attention at finite temperature
  • ? D-Propagator at finite rB and T van
    Hees RR 04

27
(i) Check D in Vacuum and in Nuclei
? ok !
28
(ii) D(1232) in URHICs
? broadening Bose factor, pD?B ? repulsion
pDN-1, pNN-1
not yet included
(pN?D)
29
Comparison of Hadronic Models to LGT
30
2.2.6 Observables in URHICs
e e-
?
  • (i) Lepton Pairs
    (ii) Photons

Turbide,GaleRR 03
  • consistent with dileptons
  • pp Brems with soft s at low q?

baryon density effects!
Write a Comment
User Comments (0)
About PowerShow.com