Title: Thermal Photons in Strong Interactions
1Thermal Photons in Strong Interactions
Ralf Rapp Cyclotron Inst. Physics Dept. Texas
AM University College Station, USA College
Station, 24.09.04
2Introduction I E.M. Probes in Strong Interactions
- g-ray spectroscopy of atomic nuclei collective
phenomena - DIS off the nucleon - parton model, PDFs
(high Q2) - - nonpert.
structure of nucleon JLAB - thermal emission - compact stars (?!)
- - heavy-ion
collisions - What is the electromagnetic spectrum of
matter?
3Outline
1. Introduction 2. Thermal Photon Emission Rates
2.1 Generalities 2.2 Quark-Gluon Plasma
Complete LO 2.3 Hadronic Matter - Meson Gas
- Baryonic
Contributions
- Medium Effects 3. Relativistic Heavy-Ion
Collisions 3.1 Nonthermal Sources 3.2 Thermal
Evolution 3.3 Comparison to SPS and RHIC
Data 4. High-Density QCD Colorsuperconductor 5.
Conclusions
4Introduction II Electromagnetic Emission Rates
E.M. Correlation Function
Im ?em(M,q)
Im ?em(q0q)
also e.m susceptibility (charge fluct) ?
?em(q00,q?0)
- In URHICs
- source strength depend. on T, mB, mp medium
effects, - system evolution V(t), T(t), mB(t)
transverse expansion, - nonthermal sources ee- Drell-Yan,
open-charm g initial/ - consistency!
pre-equil.
52. Thermal Photon Radiation
2.1 Generalities
Emission Rate per 4-volume and 3-momentum
transverse photon selfenergy
many-body language
in-medium effects, resummations,
62.2 Quark-Gluon Plasma
Naïve Leading Order Processes q q (g) ? g
(q) ?
q
g
q
Kapusta etal 91, Baier etal 92
72.3.1 Hot Hadronic Matter p-r-a1 Gas
Chiral Lagrangian Axial/Vector-mesons, e.g. HLS
or MYM
- (g0,m0,s,x) fit to mr,a1 , Gr,a1
- D/S and G(a1?p?) not optimal
Song 93, Halasz etal 98,
82.3.1.b Hadronic Formfactors
- quantitative analysis account for finite
hadron size - improves a1 phenomenology
- t-channel exchange gauge invariance nontrivial
Kapusta etal 91 - simplified approach
Turbide,GaleRR 04
with
92.3.2 Further Meson Gas Sources
(i) Strangeness Contributions SU(3)F MYM
25 of pp???
40 of pr?p? !
(iii) Higher Resonances Ax-Vec a1,h1?pg,
Vec w,w,w?pg other p(1300)?pg
f1?rg , K1?Kg K?Kg
a2(1320)?pg
102.3.3 Baryonic Contributions
- use in-medium r spectral funct
- constrained by nucl. g-absorption
B,a1,K1...
N,p,K
112.3.3(b) Photon Rates from r Spectral
FunctionBaryons Meson-Resonances
- baryonic contributions
- dominant for q0lt1GeV
- (CERES enhancement!)
- also true at RHICLHC
-
- at T180MeV, mB0
mB220MeV
122.3.4 HG Emission Rates Summary
- w t-channel (very) important
- at high energy
- formfactor suppression (2-4)
- strangeness significant
- baryons at low energy
mB220MeV
Turbide,RRGale 04
132.3.5 In-Medium Effects
- many-body approach encoded in vector-spectral
function, -
relevant below M , q0 1-1.5 GeV - dropping masses
- large enhancement due
- to increased phase space
- SongFai 98, Alam etal 03
- unless
- vector coupling decreases
- towards Tc (HLS, a?1)
- HaradaYamawaki 01,
- Halasz etal 98
142.3.6 Hadron Gas vs. QGP Emission
- complete LO QGP rate
- 2-3 above tree-level rate
- in-med HG Meson-Ex
- (bottom-up)
-
- complete LO QGP
- (top-down)
- quark-hadron duality ?!
153. Relativistic Heavy-Ion Collisions
163.1 Nonthermal Sources
Initial hard production pp ? ?X
scaling with xT2pT /vs , power-law fit
Srivastava 01
173.2 Thermal Evolution QGP? Mix? HG
QGP initial conditions SPS
- t01fm/c ? t00.5fm/c 2-3
- sCdQGT3 dQG40 ? 32 2
- pre-equilibrium?!
183.3 Comparison to Data I WA98 at SPS
Hydrodynamics QGP HG
Huovinen,RuuskanenRäsänen 02
- T0260MeV, QGP-dominated
- still true if pp?gX included
193.3 Comp. to Data II WA98 Low-qt Anomaly
Expanding Fireball Model
Turbide,RRGale04
- current HG rate much below
- 30 longer tFB ? 30 increase
203.3 Perspectives on Data III RHIC
Predictions for Central Au-Au
PHENIX Data
- large pre-equilibrium yield
- from parton cascade (no LPM)
- thermal yields consistent
- QGP undersat. small effect
- consistent with initial only
- disfavors parton cascade
- not sensitive to thermal yet
214. Photon Emission from Colorsuperconductor
Cold Quark Matter ? (qq) Cooper pairs,
Dqq100MeV mq ms2 u-d-s symmetrically paired
(Color-Flavor-Locking) ? ciral symmetry broken,
Goldstone bosons, mp2 mq2 (10MeV)2
225. Conclusions
- significant progress in E.-M. radiation from QCD
matter - - QGP soft collinear enhancement ? complete
leading order - - HG more complete (strangeness, baryons, w
t-chan, FFs)
- extrapolations into phase transition region
- ? HG and QGP shine equally bright
- deeper reason? lattice calculations?
- phenomenology for URHICs compares favorably
- with existing data
- consistency with dileptons
- much excitement ahead PHENIX, NA60, HADES,
ALICE, - and
theory!
23 24Photon Properties in Colorsuperconductors
25(i) r(770)
2.2.2 1 Mesons
Constraints - branching ratios B,M?rN,rp - gN,
gA absorpt., pN?rN - QCD sum rules
262.2.4 In-Medium Baryons D(1232)
- ? long history in nuclear physics ! ( pA , gA
) - e.g. nuclear photoabsorption MD, GD up by
20MeV - ? little attention at finite temperature
- ? D-Propagator at finite rB and T van
Hees RR 04
27(i) Check D in Vacuum and in Nuclei
? ok !
28(ii) D(1232) in URHICs
? broadening Bose factor, pD?B ? repulsion
pDN-1, pNN-1
not yet included
(pN?D)
29Comparison of Hadronic Models to LGT
302.2.6 Observables in URHICs
e e-
?
- (i) Lepton Pairs
(ii) Photons
Turbide,GaleRR 03
- consistent with dileptons
- pp Brems with soft s at low q?
baryon density effects!