Tight Bounds for Dynamic Convex Hull Queries Again - PowerPoint PPT Presentation

1 / 11
About This Presentation
Title:

Tight Bounds for Dynamic Convex Hull Queries Again

Description:

Tight Bounds for Dynamic Convex Hull Queries (Again) Erik Demaine ... SWAT'99. FOCS'99. NEW. STOC'80. O(lg n) O(lg n) [Brodal, Jacob] O(lgwn) O(lg n lglg n) ... – PowerPoint PPT presentation

Number of Views:35
Avg rating:3.0/5.0
Slides: 12
Provided by: IBMU207
Category:

less

Transcript and Presenter's Notes

Title: Tight Bounds for Dynamic Convex Hull Queries Again


1
Tight Bounds for Dynamic Convex Hull
Queries(Again)
  • Erik Demaine Mihai Patrascu

2
Dynamic Convex Hull
  • Set S, Sn points in 2d
  • insert point
  • delete point

update time tu
  • linear programming
  • tangents

query time tq
3
History
p
p
p
So what are you going to improve?
4
O(lg n) Optimal?
bounded precision say, w bits
  • NO! radix sort, hashing, closest pair in
    O(n)
  • Sorting O(nvlglg n) n2O(vlglg n)
  • Voronoi, segment intersection etc.
  • Searching O(min lgwn, lg w) O(min lg n/lglg
    n, vw/lg w)

1d
2d
Patrascu FOCS06 Chan FOCS06 Chan, P. STOC07
predecessor search
point location
5
Motivation Information
O(lg n)
  • binary search
  • in each step, reduce entropy by 1 bit gt O(lg n)
  • fusion trees a sketch of w bits allows
    search among vw values
  • gt each step reduces entropy by ½lg w gt
    O(lgwn)
  • different information concepts
  • H(s1,s2)lg l lg r
  • can sketch k segments, if all
    H(si,si1)H(s1,sk)/k

1d
2d
s1
r
l
s2
6
Dynamic Convex Hull
Static
  • linear programminggt predecessor search e.g.
    O(lg w)lt Chazelle
  • tangentsgt planar point location e.g. O(vw)

1
6
4
5
6
2
5
1
3
2
3
4
7
History
Updating
8
Review of Overmars, van Leeuwen
  • split with vertical line
  • compute 2 hulls recursively gt O(lg n) levels
  • find bridges -- O(lg n)
  • cutmerge hull trees -- O(lg n)
  • gt tuO(lg2n)
  • examine bridges
  • recurse left or right
  • gt tqO(lg n)

9
Proof sketch
  • split into lg n subhulls gt depth O(lg n/lglg n)
  • query
  • remember can sketch k segments, if all
    H(si,si1)w/k gt superconstant time/level if
    some H is small
  • information efficiency H only decreases through
    recursion
  • info efficiency gt cannot be slow too many
    times H acts as potential, bounding running time
  • locate among 2lg n bridges
  • recurse

10
Summary Our Contribution
  • dynamic geometry with bounded precision
  • lots of geometry gt Overmars, van Leeuwen is
    informationally efficient
  • lower bound
  • 1d-like structure for LP

OPEN Chan, Brodal-Jacob not info efficient
OPEN O(lg n/lglg n) vs. ?(lgwn)
OPEN Improve updates. Can tu ltlt lg n ??
11
T
H
E
E
N
D
Write a Comment
User Comments (0)
About PowerShow.com