Title: Neural Networks
1Neural Networks
www.msm.cam.ac.uk/phase-trans
2(No Transcript)
3 4(No Transcript)
5There are many problems where simplification is
unacceptable
6(No Transcript)
7(No Transcript)
8Charpy
fatigue
tensile
critical stress intensity
corrosion
9- Given a comprehensive description of material,
process and structure, it is not yet possible to
predict most properties.
10Variables
- C, Mn, Si, Ni, Cr, Mo, V, Co, B, N, O..
- Thermomechanical processing of steel
- Welding consumable
- Welding parameters
- Subsequent heat treatment
11y
x
Michael McIntyre
12Solution
- non-linear functions
- large numbers of variables
- uncertainties
- exploit large knowledge base
13Empirical Equations
?y a b (C) c (Mn) d (Ni)
....
14?y a b (C) c (Mn) ?y a b (C) c
(Mn) d(C x Mn)
15?y a b (C) c (Mn) ?y a b (C) c
(Mn) d(C x Mn) ?y sin (C)
tanh (Mn)
16(No Transcript)
17Hyperbolic Tangents
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26y
A
B
x
27(No Transcript)
28What is the range over which an empirical method
should be used?
29Outliers
30Cole Bhadeshia, 1999
31GTA weld at 823 K (data from Nippon Steel)
600
500
400
300
200
100
0
20000
30000
40000
Life / hours
Cole Bhadeshia, 1999
32(No Transcript)
33Cool, 1996
34Cool, 1996
35600 C
As-welded
700 C
650 C
Cool, 1996
36Siemens Mitsui Babcock Nippon Steel ABB
37Murugananth Bhadeshia, 2002
38Coalesced bainite
Keehan, Karlsson, Andrén and Bhadeshia, 2005
39Nickel base alloy FT750dc
wt
40(No Transcript)
41Tancret Bhadeshia, 2002
1000
800
600
Yield stress / MPa
400
200
0
0
200
400
600
800
1000
1200
Temperature / C
42International Fusion Reactor
Reduced activation steels
43Fusion Reactor Steels Kemp, Cottrell Bhadeshia,
2006
44(No Transcript)
45Thank you
46Classification networks
47(No Transcript)
48(No Transcript)
49(No Transcript)
50(No Transcript)