Title: Antimatter
1111
Antimatter
2Congratulations and Thanks Ron!
- Plasma Fusion Center, MIT
3New Tools for Antimatter Studies -Positron
Plasmas and Trap-Based Beams
Cliff Surko
James Danielson Toby Weber Tom ONeil Mike
Anderson
Supported by NSF, DOE/NSF Partnership
4Antimatter in our world of Matter
Plasma Physics- enabling the study and use
low-energy antimatter
5The real reason we are making antihydrogen...
But the real reason were making antimatter
6Why Trap and Cool Antimatter?
- Isolate interactions with matter
- - Atomic/molecular physics
- - Laboratory astrophysics
- Density dependent processes
- - Pulsed, bright beams
- (e.g., plasma diagnostics, materials
analysis) - - Antihydrogen production
- - Electron-positron plasmas
- - BEC positronium
e
7A Near-Perfect Antimatter Bottle The
Penning-Malmberg Trap
E x B plasma rotation fE cne/B
John Malmberg
- Angular Momentum
- No torques Lz is constant No
expansion!
(Malmberg deGrassie 75 ONeil 80)
8Buffer-Gas Positron Trap
? Trap using a N2-CF4 gas mixture ?
Positrons cool to 300K (25meV) in 0.1s
30 trapping efficiency
Surko PRL 88 Murphy, PR 92
9Buffer-gas Accumulator
Positron plasma
Gas in
1.8 m
Positrons in (flux 1 pA)
Cryopumps
10Trapping Antimatter Goals Long-term
storage High capacity Cold, dense
plasmas Portable antimatter traps Considerations
Space charge 10 kV ? 1011 e/cm
Confinement at high plasma densities? Cooling
tcool 0.2 s _at_ 5 tesla
cylindrical plasma
11Overview of Positron Trapping
Improved trap
trapped positrons
Stacking ATHENA
Solid neon moderator
Computerized optimization
Improve B-field
Improve vacuum
Year
12New Tools for Antimatter Physics
- Increase positron storage capacity
- Plasma compression for lifetime and
- density control
-
- Extraction of finely focused beams
13Multicell Trap for Large Ntot Many beaded
rods in parallel
Design Parameters
- B 5T
- n 3x1010 cm-3
- Lp 5 cm
- Rp 0.14 cm
- T 2 eV
- Ntot 1010 (1 cell)
- fc 1 kV
B
L
Side View
Lp
Positron Plasma
2Rp
Total number of cells 100 Ntot 1012
RF Electrodes
DC Electrode
Surko and Greaves, Radiation Physics and
Chemistry (2003)
14Multicell Positron Trap Electrodes
master cell
2 banks of 19 storage cells
Danielson, Phys. Plasmas (2006)
15D/Rw 0.8
fD fDo1 - (D/Rw)2-1
Danielson, Phys. Plasmas (2006)
16Rotating-Wall Compression of Positron Plasmas
Applications - infinite confinement times -
increase plasma density - create bright
antiparticle beams
- Compress radially using a rotating electric
field. - Good coupling over broad range of frequencies.
(Huang, et al., Anderegg, et al., Hollmann, et
al., 95 - 00)
17Transition/bifurcation
_________________________________________________
electron plasma
Danielson PRL (05) Phys. Pl. (06)
18(No Transcript)
19Zero-Frequency-Mode (ZFM) Drag is Key to the
Dynamics Dependence on fRW
Danielson, ONeil, Surko, PRL, submitted
20RW Compression in the Strong Drive Regime
- Good physical model of transitions,
- upper and lower fixed points.
- Now explore limits, high densities
- and low temperatures for applications
21Brightness Enhancement Using Traps
- Rotating wall compressed plasma
- Slow release creates beam narrower than plasma
- RW and inward transport fill hole created by
positron release
Danielson, APL (2007)
22Beam Extraction
Plasma
(10 ms pulses)
electron plasma
Small-beam limit
23(No Transcript)
24Whats Next - Some Near-term Goals
- Explore the density limits of RW compression
- Create a 1 meV positron beam
- Develop a multicell trap
Long-term challenge a portable antimatter trap
25 For references see http//positrons.ucsd
.edu/