SOHO 20 - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

SOHO 20

Description:

Halo coronal mass ejections and proton events during ... SOHO/ERNE proton intensities. 1.8 - 80 MeV in six energy channels. Storm Sudden Commencement (SSC) ... – PowerPoint PPT presentation

Number of Views:32
Avg rating:3.0/5.0
Slides: 25
Provided by: pama
Category:
Tags: soho | erne

less

Transcript and Presenter's Notes

Title: SOHO 20


1
Halo coronal mass ejections and proton events
during solar cycle 23
SOHO 20 - Transient Events on the Sun and in the
Heliosphere
  • P. Mäkelä1,2, N. Gopalswamy2, S. Yashiro1,2,
  • S. Akiyama1,2, and E. Valtonen3
  • Catholic University of America, USA
  • NASA/Goddard Space Flight Center, USA
  • Space Research Laboratory and Väisälä Institute
    for Space Research and Astronomy, Finland

2
Earth-directed CMEs
  • 10 of CMEs hit the Earth
    (e.g., Webb and Howard 1994)
  • 50 of frontside CMEs with widths gt140
    encounter the Earth (Cane et al., 2000)
  • 71 of frontside full halo CMEs are
    geoeffective (GE) (Gopalswamy et al., 2007)
  • Dst-index
  • Weak storm -30 nT lt Dst -50 nT
  • Moderate storm -50 nT lt Dst lt -100 nT
  • Severe storm Dst -100 nT
  • CMEs causing strong storms originate more likely
    from the western hemisphere (Zhang et al., 2003)

3
Halo CMEs are inherently fast
(Gopalswamy et al. 2007 JGR)
Limb halos are 66 faster than disk halos ?
projection effects
4
Correlations
  • CME speed and Solar Energetic Particle (SEP)
    intensity correlate (e.g., Kahler,1978
    Reames, 1999)
  • Scatter still large (Kahler, 2001)
  • CME speed and geoeffectiveness correlate (e.g.,
    Srivastava et al., 2002)
  • Halo CME rate and SEP event rate correlate (e.g.,
    Valtonen, 2006)

5
Data
  • Gopalswamy et al. 2007
  • LASCO list of full halo CMEs in 1996-2005
    (total of 378), flare location and Dst index
    (World Data Center in Kyoto)
  • SOHO/ERNE proton intensities
  • 1.8 - 80 MeV in six energy channels
  • Storm Sudden Commencement (SSC)
  • Solar Geophysical Data
  • Shock times
  • SOHO/Proton Monitor (http//umtof.umd.edu/pm)
  • ACE/SWEPAM and MAG (http//www.bartol.udel.edu/ch
    uck/ace/ACElists/obs_list.html)

6
(No Transcript)
7
SEPeffectiveness
  • 180 (51) of analysed 354 halo CMEs had
    observable proton event.
  • 135 proton events associated with a frontside
    halo CME 63 of all frontside halo CMEs.
  • 45 proton events associated with a backside CME
    32 of all backside halo CMEs (20 behind limb
    CMEs).

8
Source location, geoeffectiveness and
SEPeffectiveness
Average longitude Moderate E09 Severe W06
Average longitude Moderate E02 Severe W11
  • 40 (67) moderately and 55 (63) strongly GE
    frontside CMEs associated with a proton event.

9
SEP Storm Sources
Gopalswamy et al. 2005
SEP source
Storm source
10
  • SEPs
  • Moderate1217 km/s
  • Severe 1284 km/s
  • No SEPs
  • Moderate 823 km/s
  • Severe 757 km/s

11
SEPs with Energetic Storm Particle (ESP) event
with shock/SSC
12
ESP
13
Sources without ESP
but possibly with shock/SSC
14
Peak intensities
Moderate
Severe
2.7-5.1 MeV
12.7-22.1 MeV
15
Longitudinal dependence
Moderate
Severe
2.7-5.1 MeV
12.7-22.1 MeV
16
Speed dependence
Moderate
Severe
C0.62
C0.46
2.7-5.1 MeV
C0.66
C0.14
12.7-22.1 MeV
17
Conclusions
  • Conducted a statistical study of 354 halo CMEs
  • 51 of geoeffective CMEs associated with a
    proton event.
  • 63 of all frontside halo CMEs associated with
    a proton event
  • 32 of all backside halo CMEs associated with
    a proton event
  • Proton events by strongly GE CMEs are more likely
    intense and originate from the western hemisphere
    than proton events by moderately GE CMEs
  • Strongly GE CMEs with a SEP and ESP event
    originate west from solar central meridian,
    moderately GE CMEs with a SEP and ESP event east
    from the central meridian.

18
THE END
19
(No Transcript)
20
Forecasting
  • 47-65 keV ion enhancements
  • Together with halo CME observations improve
    prediction of geoeffectiveness (Smith et al.,
    2004)
  • 1-110 MeV protons
  • Improves frontside/backside CME separation.
    Travel time proxy correlates with storm strenght.
  • Specific SEP signatures ambigious
    reduced prediction efficiency. (Valtonen et al.,
    2005)
  • E 10 MeV SEP enhancements
  • Better than speed as an indicator of
    geoeffectiveness (Gleisner 2006).

21
SEP-associated CMEs
Gopalswamy et al. 2005
22
Background
  • Gradual Solar Energetic Particle (SEP) event
  • CME associated shock accelerates particles
    (Reames 1999)
  • Time profiles highly variable
  • Geomagnetic storm
  • Interplanetary magnetic field southward for an
    extended period of time
  • Depression in Dst-index
  • Weak storm -30 nT lt Dst -50 nT
  • Moderate storm -50 nT lt Dst lt -100 nT
  • Severe storm Dst -100 nT

(Gopalswamy et al., 2007)
23
Causes of scatter
  • Projection effects on speed
    (e.g., Burkepile et al., 2004)
  • Fast/slow SW (Kahler 2004, not observed)
  • CME width (Kahler et al., 1984, Gopalswamy et
    al., 2004)
  • CME acceleration (e.g., Kocharov et al. 2001)
  • Preceding CMEs (Gopalswamy et al. 2003)
  • Preceding SEP events (Kahler 2001).

24
References
  • Cane et al. (2000), Geophys. Res. Lett., 27(21),
    3591, 10.1029/2000GL000111.
  • Gopalswamy et al. (2004), J. Geophys. Res.,
    109(A12), A12105, 10.1029/2004JA010602.
  • Gopalswamy et al. (2007), J. Geophys. Res., 112,
    A06112, doi10.1029/2006JA012149.
  • Kahler et al. (1978), Sol. Phys., 57, 429.
  • Srivastava et al. (2002), Geophys. Res. Lett.,
    29(9), 1287, 10.1029/2001GL013597.
  • Valtonen (2006), Geophysical Monograph Series
    165, Gopalswamy, N., Mewaldt, R., and Torsti, J.
    (Eds.), AGU, Washington, DC, 21-32.
  • Zhang et al. (2003), Astrophys. J., 582, 520.
Write a Comment
User Comments (0)
About PowerShow.com