Title: Laserinduced Coulomb explosion imaging of molecular dynamics
1Laser-induced Coulomb explosion imaging of
molecular dynamics
- Introduction
- Structure determination with CEI
- Dynamics studies with CEI
2Coulomb explosion
MeV
100 Å
- Developed in 1979 ANL
- Interaction times 100 attoseconds --- 1
femtosecond
3Coulomb Explosion Imaging
Accelerator Coulomb Explosion Imaging
MeV
beam
ANL 1979
Ultrathin
foil
Detector
Laser-induced Coulomb Explosion Imaging
Detector
4Time-Resolved Molecular Imaging
The Objective
To observe the dynamics of polyatomic molecules
Possible approaches Spectroscopy Electron
Diffraction X-Ray Diffraction Coulomb Explosion
Imaging
5Dynamics Pump-Probe Spectroscopy
Weak pump pulse
excites molecule
E
Probe
Pump
?t
Delay allows
time evolution
Probe
Pump
?t
Intense probe
E
pulse ionizes
molecule
Molecule explodes
6Exploding pulse duration and nuclear dynamics
7Generation of ultra-short laser pulses
Hollow fiber 1 m, DI 250 µm
Ar 1.05 atm
Ei 300 mJ 800 nm, 40 fs
Eo 150 mJ 800 nm
- Compression with chirped mirror Tpulses lt 8 fs.
- Focusing to 5 microns I 1016 W/cm2
8Experimental apparatus
9Simplest model --- Coulomb explosion of D2
10Timing ionization - Molecular clock
- (1) Ionisation of D2 starts the clock
- (2) Ionisation of D2 stops the clock
- Kinetic energy of D measures delay between 1 and
2
Molecular clock
11D2 explosion
40 fs 2x1015 W/cm2
Sub-8fs 2x1015 W/cm2
2.66 fs
Theory 5.22 fs
Sub-8 fs double ionization of D2 Is complete in
less than 4 femtosecondes
12Nuclear wave function density ?(R,t)2
D2
Theory 4 fs
Exp. 8fs
Exp. gt40fs
13Diatomic vs triatomic
14Molecular structure reconstruction from 3D momenta
Experiment Piex
Potential U(Xi) - Coulombic or ab initio
Equations of motion dPi/dt -?U(Xi)/?Xi
Initial conditions Xi(t0) Xi0
Solve Xi(t), Pi(t), Pi? Pi(t ? ?)
Iterative optimization vary Xi0 to minimize
?Pi?- Piex
good fit
Structure Xiopt
15Triple coincidence 3D momentum spectroscopy
Uncorrelated
16Kinetic energy --- D2O
lt 8fs
I 5x1015 W/cm2
17Structure of D2O
Angstrom
Angstrom
Signal (u.a.)
Angstrom
q
(degrees)
DOD
18Structure of SO2
Angstrom
Angstrom
Signal (a.u.)
q
(degrees)
Angstrom
OSO
19Structure of SO2 vs angle in respect to laser
polarization polarisation
20Image distortion
- Dynamics before the explosion
- D2O numeric simulation
-
- Dependence of ionization rate
- on nuclear coordinates
- D2 numeric simulation
-
- Angle in respect to the laser field ???
- SO2
- Spatial resolution lt 0.3 Å
21Pump-probe spectroscopy --- observing motion of
protons
22Pump-probe spectroscopy - D2
(2) D D
(1) D2
?t
0 75 fs
23(No Transcript)
24Dynamics ofD2
- Dinamics can be measured with sub-5fs time
resolution - 3D momemtum spectroscopy with pump-probe would
allow transient structure determination
25Pump-probe spectroscopy --- SO2
(2) O2 S3 O2
(1) SO2,2,3
?t
0 330 fs
SO2
O
S
SO
26Symmetric vs. asymmetric dissociation
Kinetic energy correlation as function of delay
should indicate the symmetry
27Dynamics of O-O energy correlation
0 fs
30 fs
15 fs
45 fs
28Dt45 fs
29Confirmation of dissociation channel
30Symmetricdissociation
0 fs
15 fs
30 fs
45 fs
60 fs
31Applications
- Study dynamics of internal rearragement in fast
photochemical reactions - Another example excited state proton transfer
(lt 50 fs) - Understanding and optimizing coherent control of
photochemical reactions
UV ?
H-CC-H ? H-CC-H2 ? CH CH ?
C CH2
32- F. Légaré - Université de Sherbrooke
- K. Lee, P. Dooley - McMaster University
- D. Villeneuve, P. Corkum NRC Ottawa
-
33(No Transcript)