Title: Computational Chemistry
1Computational Chemistry
G. H. CHEN Department of Chemistry University of
Hong Kong
2Beginning of Computational Chemistry
In 1929, Dirac declared, The underlying physical
laws necessary for the mathematical theory of
...the whole of chemistry are thus completely
know, and the difficulty is only that the
exact application of these laws leads to
equations much too complicated to be soluble.
Theory is reality ! W.A. Goddard III
Dirac
3Computational Chemistry
Quantum Chemistry Molecular Mechanics Bioinform
atics Create Analyse Bio-information
SchrÖdinger Equation
F M a
4Nobel Prizes for Computational Chemsitry
Mulliken,1966
Fukui, 1981
Hoffmann, 1981
Pople, 1998
Kohn, 1998
5Computational Chemistry Industry
Company
Software
Gaussian Inc. Gaussian 94, Gaussian
98 Schrödinger Inc. Jaguar Wavefunction Spart
an Q-Chem Q-Chem Accelrys InsightII,
Cerius2 HyperCube HyperChem Celera Genomics
(Dr. Craig Venter, formal Prof., SUNY, Baffalo
98-01)
Applications material discovery, drug design
research
RD in Chemical Pharmaceutical industries in
2000 US 80 billion Bioinformatics Total Sales
in 2001 US 225 million Project Sales in
2006 US 1.7 billion
6Software Development at HKU
LODESTAR v1.02 --Localized Density Matrix STAR
performer
http//yangtze.hku.hk
7Quantum Chemistry Methods
- Ab initio molecular orbital methods
- Semiempirical molecular orbital methods
- Density functional method
8SchrÖdinger Equation
H y E y
Wavefunction
Hamiltonian H ??(-h2/2ma)??2 - (h2/2me)?i?i2
???? ZaZbe2/rab - ?i ?? Zae2/ria ?i ?j
e2/rij
Energy
9Vitamin C
C60
energy
heme
OH D2 --gt HOD D
Cytochrome c
10C60 and Superconductor
What is superconductor? Electrical Current
flows for ever !
Soccer Ball
Applications Magnet, Magnetic train, Power
transportation
11Crystal Structure of C60 solid
Crystal Structure of K3C60
12K3C60 is a Superconductor (Tc 19K)
Vibration of Atoms
The mechanism of superconductivity in K3C60 was
discovered using com-putational chemistry methods
Varma et. al., 1991 Schluter et. al., 1992
Dresselhaus et. al., 1992Chen Goddard, 1992
Effective Attraction !
Vibration Spectrum of K3C60
Erwin Pickett, Science, 1991
GH Chen, Ph.D. Thesis, Caltech (1992)
13Carbon Nanotubes (Ijima, 1991)
14Calculated STM Image of a Carbon Nanotube
(Rubio, 1999)
STM Image of Carbon Nanotubes (Wildoer et. al.,
1998)
15Computer Simulations (Saito, Dresselhaus, Louie
et. al., 1992) Carbon Nanotubes
(n,m) Conductor, if n-m 3I
I0,1,2,3,or Semiconductor, if n-m ? 3I
Metallic Carbon Nanotubes Conducting
Wires Semiconducting Nanotubes Transistors Mole
cular-scale circuits ! 1 nm transistor!
30 nm transistor!
0.13 µm transistor!
16Experimental Confirmations Lieber et. al. 1993
Dravid et. al., 1993 Iijima et. al. 1993
Smalley et. al. 1998 Haddon et. al. 1998 Liu
et. al. 1999
Wildoer, Venema, Rinzler, Smalley, Dekker, Nature
391, 59 (1998)
17Science 9th November, 2001 Logic gates (and
circuits) with carbon nanotuce transistor
Science 7th July, 2000 Carbon nanotube-Based
nonvolatile RAM for molecular computing
18(No Transcript)
19Nanoelectromechanical Systems (NEMS)
K.E. Drexler, Nanosystems Molecular Machinery,
Manufacturing and Computation (Wiley, New York,
1992).
20Large Gear Drives Small Gear
G. Hong et. al., 1999
21Nano-oscillators
Nanoscopic Electromechanical Device (NEMS)
Zhao, Ma, Chen Jiang, Phys. Rev. Lett. 2003
22Oscillation
Hibernation
Awakening
23Quantum mechanical investigation of the field
emission from the tips of carbon nanotubes
Zheng, Chen, Li, Deng Xu, Phys. Rev. Lett. 2004
Zettl, PRL 2001
24Computer-Aided Drug Design
Human Genome Project
GENOMICS
Drug Discovery
25ALDOSE REDUCTASE
Diabetic Complications
Diabetes
Sorbitol
Glucose
26Design of Aldose Reductase Inhibitors
Inhibitor
Aldose Reductase
Hu Chen, 2003
27Database for Functional Groups
Structure-activity-relation
Prediction Drug Leads
LogIC50 0.6861,0.88
LogIC50 0.6382,1.0
28(No Transcript)
29Prediction Results using AutoDock
LogIC50 0.77,1.1
LogIC50 -1.87,4.05
LogIC50 -2.77,4.14
LogIC50 0.68,0.88
Hu Chen, 2003
30Computer-aided drug design
Chemical Synthesis
Screening using in vitro assay
Animal Tests
Clinical Trials
31Bioinformatics
- Improve content utility of bio-databases
- Develop tools for data generation, capture
annotation - Develop tools for comprehensive functional
studies - Develop tools for representing analyzing
sequence similarity variation
32(No Transcript)
33Computational Chemistry
- Increasingly important field in chemistry
- Help to understand experimental results
- Provide guidelines to experimentists
- Application in Materials Pharmaceutical
industries - Future simulate nano-size materials, bulk
materials replace experimental RD
Objective More and more research development
to be performed on computers and Internet instead
in the laboratories
34Quantum Chemistry
G. H. Chen Department of Chemistry University of
Hong Kong
35Contributors Hartree, Fock, Slater, Hund,
Mulliken, Lennard-Jones, Heitler, London,
Brillouin, Koopmans, Pople, Kohn
Application  Chemistry, Condensed Matter
Physics, Molecular Biology, Materials Science,
Drug Discovery
36Emphasis Hartree-Fock method Concepts
Hands-on experience
Text Book Quantum Chemistry, 4th Ed.
Ira N. Levine
http//yangtze.hku.hk/lecture/chem3504-3.ppt
37Contents 1. Variation Method 2. Hartree-Fock
Self-Consistent Field Method 3. Perturbation
Theory 4. Semiempirical Methods
38The Variation Method
The variation theorem
Consider a system whose Hamiltonian operator H is
time independent and whose lowest-energy
eigenvalue is E1. If f is any normalized,
well- behaved function that satisfies the
boundary conditions of the problem, then ?
f H f dt gt E1
39Proof Expand f in the basis set yk f
?k akyk where ak are coefficients Hyk
Ekyk then ? f H f dt ?k ?j ak aj Ej dkj
?k ak2 Ek gt E 1 ?k ak2 E1
Since is normalized, ? ff dt ?k ak2
1
40 i. f trial function is used to evaluate the
upper limit of ground state energy E1 ii. f
ground state wave function, ? f H f dt
E1 iii. optimize paramemters in f by
minimizing ? f H f dt / ? f f dt
41Application to a particle in a box of infinite
depth
l
0
Requirements for the trial wave function i.
zero at boundary ii. smoothness ? a maximum in
the center. Trial wave function f x (l -
x)
42? ? H ? dx -(h2/8?2m) ? (lx-x2) d2(lx-x2)/dx2
dx h2/(4?2m) ? (x2 - lx) dx
h2l3/(24?2m) ? ?? dx ? x2 (l-x)2 dx
l5/30 E? 5h2/(4?2l2m) ? h2/(8ml2) E1
43Â Variational Method
(1) Construct a wave function ?(c1,c2,???,cm) (2)
Calculate the energy of ? E? ?
E?(c1,c2,???,cm) (3) Choose cj (i1,2,???,m)
so that E? is minimum
44Example one-dimensional harmonic
oscillator  Potential V(x) (1/2) kx2 (1/2)
m?2x2 2?2m?2x2 Trial wave function for the
ground state ?(x) exp(-cx2) ? ? H ? dx
-(h2/8?2m) ? exp(-cx2) d2exp(-cx2)/dx2 dx
2?2m?2 ? x2 exp(-2cx2) dx
(h2/4?2m) (?c/8)1/2 ?2m?2
(?/8c3)1/2 ? ?? dx ? exp(-2cx2) dx (?/2)1/2
c-1/2 E? W (h2/8?2m)c (?2/2)m?2/c
45To minimize W, 0 dW/dc h2/8?2m -
(?2/2)m?2c-2 c 2?2?m/h W (1/2) h?
46Extension of Variation Method
  . . . E3 y3 E2 y2 E1 y1
For a wave function f which is orthogonal to the
ground state wave function y1, i.e. ?dt fy1
0 Ef ?dt fHf / ?dt ff gt E2 the first
excited state energy
47The trial wave function f ?dt fy1 0 Â f
?k1 ak yk  ?dt fy1 a12 0  Ef ?dt fHf
/ ?dt ff ?k2ak2Ek / ?k2ak2 gt
?k2ak2E2 / ?k2ak2 E2
48Application to H2
e  Â
Â
y1
y2 f c1y1 c2y2
W ? fH f dt / ? ff dt (c12 H11 2c1
c2 H12 c22 H22 ) / (c12 2c1 c2 S
c22 ) Â W (c12 2c1 c2 S c22) c12 H11
2c1 c2 H12 c22 H22
49Partial derivative with respect to c1 (?W/?c1
0) Â W (c1 S c2) c1H11 c2H12 Â Partial
derivative with respect to c2 (?W/?c2 0) W
(S c1 c2) c1H12 c2H22 Â (H11 - W) c1 (H12
- S W) c2 0 (H12 - S W) c1 (H22 - W) c2 0
50To have nontrivial solution  H11 - W H12 - S
W H12 - S W H22 - W Â For H2, H11 H22 H12 lt
0. Â Ground State Eg W1 (H11H12) / (1S)
f1 (y1y2) / ?2(1S)1/2 Excited
State Ee W2 (H11-H12) / (1-S) f2
(y1-y2) / ?2(1-S)1/2
0
bonding orbital
Anti-bonding orbital
51 Results De 1.76 eV, Re 1.32 A Â Exact
De 2.79 eV, Re 1.06 A Â
1 eV 23.0605 kcal / mol
52Further Improvements  H p-1/2 exp(-r) He
23/2 p-1/2 exp(-2r)
Optimization of 1s orbitals
Trial wave function k3/2 p-1/2 exp(-kr)Â
Eg W1(k,R) Â at each R, choose k so that
?W1/?k 0 Results De 2.36 eV, Re 1.06 A
   Resutls De 2.73 eV,
Re 1.06 A
Inclusion of other atomic orbitals
53 Â Â a11x1 a12x2 b1 a21x1 a22x2
b2 Â (a11a22-a12a21) x1 b1a22-b2a12 (a11a22-a12a
21) x2 b2a11-b1a21
Linear Equations
1. two linear equations for two unknown, x1 and x2
54(No Transcript)
55n linear equations for n unknown variables
a11x1 a12x2 ... a1nxn b1 a21x1 a22x2
... a2nxn b2 ..................................
.......... an1x1 an2x2 ... annxn bn
56 a11 a12 ... a1,k-1 b1 a1,k1 ... a1n
a21 a22 ... a2,k-1 b2 a2,k1 ...
a2n det(aij) xk . . ... . .
. ... . an1 an2 ... an,k-1
b2 an,k1 ... ann   where,
a11 a12 ... a1n a21 a22 ... a2n det(aij)
. . ... . an1 an2 ... ann
57inhomogeneous case bk 0 for at least one k
 a11 a12 ... a1,k-1 b1 a1,k1 ... a1n
a21 a22 ... a2,k-1 b2 a2,k1 ... a2n .
. ... . . . ... .
an1 an2 ... an,k-1 b2 an,k1 ... ann xk
det(aij) Â
58homogeneous case bk 0, k 1, 2, ... , n
(a) travial case xk 0, k 1, 2, ... , n (b)
nontravial case det(aij) 0 Â
For a n-th order determinant, n det(aij)
? alk Clk l1 where, Clk is
called cofactor
59Trial wave function f is a variation function
which is a combination of n linear independent
functions f1 , f2 , ... fn, Â f c1f1 c2f2
... cnfn  n ? ? ( Hik - SikW )
ck 0 i1,2,...,n k1 Sik
? ?dt fi fk Hik ? ? dt fi H fk W ? ? dt f H f
/ ? dt f f
60 Â (i) W1 ? W2 ? ... ? Wn are n roots of
Eq.(1), (ii) E1 ? E2 ? ... ? En ? En1 ? ...
are energies of eigenstates then, W1 ?
E1, W2 ? E2, ..., Wn ? En
Linear variational theorem
61Molecular Orbital (MO) ? c1?1 c2?2 Â
( H11 - W ) c1 ( H12 - SW ) c2 0
S111 ( H21 - SW ) c1 ( H22 - W
) c2 0
S221 Generally ??i? a set of atomic
orbitals, basis set LCAO-MO ? c1?1 c2?2
...... cn?n linear combination of atomic
orbitals n ? ( Hik - SikW ) ck 0 i
1, 2, ......, n k1 Hik ? ? dt ?i H ?k Sik ?
?dt ?i?k Skk 1
62The Born-Oppenheimer Approximation
Hamiltonian H ??(-h2/2ma)??2 -
(h2/2me)?i?i2 ???? ZaZbe2/rab -
?i ?? Zae2/ria ?i ?j e2/rij
  H y(rira) E y(rira)
63The Born-Oppenheimer Approximation
- (1) y(rira) yel(rira) yN(ra)
- (2) Hel(ra ) - (h2/2me)?i?i2 - ?i?? Zae2/ria
- ?i?j e2/rij
- VNN ???b ZaZbe2/rab
- Hel(ra) yel(rira) Eel(ra) yel(rira)
- (3) HN ??(-h2/2ma)??2 U(ra)
- U(ra) Eel(ra) VNN
- HN(ra) yN(ra) E yN(ra)
64Assignment Calculate the ground state energy and
bond length of H2 using the HyperChem with the
6-31G (Hint Born-Oppenheimer Approximation)
65Hydrogen Molecule H2
e Â
 e two electrons cannot be
in the same state.
The Pauli principle
66Wave function f(1,2) ja(1)jb(2) c1
ja(2)jb(1) f(2,1) ja(2)jb(1) c1 ja(1)jb(2)
Since two wave functions that correspond to the
same state can differ at most by a constant
factor  f(1,2) c2 f(2,1) ja(1)jb(2)
c1ja(2)jb(1) c2ja(2)jb(1) c2c1ja(1)jb(2)
c1 c2 c2c1 1 Therefore c1
c2 ? 1 According to the Pauli principle, c1
c2 - 1
67The Pauli principle (different version)
the wave function of a system of electrons must
be antisymmetric with respect to interchanging
of any two electrons.
Slater Determinant
68Energy E?
- E?2? dt1 f(1) (TeVeN) f(1) VNN
- ? dt1 dt2 f2(1) e2/r12 f2(2)
- ?i1,2 fii J12 VNN
- Â
- To minimize E? under the constraint ? dt f2
1, - use Lagranges method
- Â L E? - 2 e ? dt1 f2(1) - 1
- dL dE? - 4 e ? dt1 f(1)df(1)
- 4? dt1 df(1)(TeVeN)f(1)
- 4? dt1 dt2 f(1)f(2) e2/r12 f(2)df(1)
- - 4 e ? dt1 f(1)df(1)
- 0Â
69 TeVeN ? dt2 f(2) e2/r12 f(2) f(1) e
f(1) Â
Average Hamiltonian
Hartree-Fock equation
( f J ) f e f f(1) Te(1)VeN(1) one
electron operator J(1) ? dt2 f(2) e2/r12 f(2)
two electron Coulomb operator
70f(1) is the Hamiltonian of electron 1 in the
absence of electron 2 J(1) is the mean
Coulomb repulsion exerted on electron 1 by
2 e is the energy of orbital f.
LCAO-MO f c1y1 c2y2 Â Multiple y1 from the
left and then integrate c1F11 c2F12 e (c1
S c2)
71Multiple y2 from the left and then integrate
 c1F12 c2F22 e (S c1 c2)  where,
Fij ? dt yi ( f J ) yj Hij ? dt yi J
yj S ? dt y1 y2 (F11 - e) c1 (F12
- S e) c2 0 (F12 - S e) c1 (F22 - e) c2 0
72bonding orbital e1 (F11F12) / (1S)
f1 (y1y2) / ?2(1S)1/2 Â antibonding
orbital e2 (F11-F12) / (1-S ) f2
(y1-y2) / ?2(1-S)1/2
73Molecular Orbital Configurations of Homo nuclear
Diatomic Molecules H2, Li2, O, He2, etc
Moecule Bond order De/eV H2
? 2.79
H2 1 4.75
He2 ?
1.08 He2 0
0.0009 Li2
1 1.07 Be2
0
0.10 C2 2
6.3 N2
? 8.85
N2 3
9.91 O2 2?
6.78 O2
2 5.21
The more the Bond Order is, the stronger the
chemical bond is.
74Bond Order one-half the difference between the
number of bonding and antibonding electrons
75 --------?-------- f1 Â
--------?-------- f2
76 Ey ? dt1dt2 y H y ? dt1dt2 y
(T1V1NT2V2NV12VNN) y ltf1(1)
T1V1Nf1(1)gt ltf2(2) T2V2Nf2(2)gt
ltf1(1) f2(2) V12 f1(1) f2(2)gt
- ltf1(2) f2(1) V12 f1(1) f2(2)gt VNN
?i ltfi(1) T1V1N fi(1)gt ltf1(1)
f2(2) V12 f1(1) f2(2)gt - ltf1(2)
f2(1) V12 f1(1) f2(2)gt VNN
?i1,2 fii J12 - K12 VNN
77Average Hamiltonian
Particle One f(1) J2(1) - K2(1) Particle
Two f(2) J1(2) - K1(2) Â f(j) ?
-(h2/2me)?j2 - ?? Za/rja Jj(1) q(1) ? q(1) ? dr2
fj(2) e2/r12 fj(2) Kj(1) q(1) ? fj(1)? dr2
fj(2) e2/r12 q(2)
78Hartree-Fock Equation
f(1) J2(1) - K2(1) f1(1) e1 f1(1) f(2)
J1(2) - K1(2) f2(2) e2 f2(2)
Fock Operator
F(1) ? f(1) J2(1) - K2(1) Fock operator for
1 F(2) ? f(2) J1(2) - K1(2) Fock operator
for 2
79Summary
1. At the Hartree-Fock Level there are two
possible Coulomb integrals contributing the
energy between two electrons i and j Coulomb
integrals Jij and exchange integral
Kij  2. For two electrons with different spins,
there is only Coulomb integral Jij 3. For two
electrons with the same spins, both Coulomb and
exchange integrals exist.
80 4. Total Hartree-Fock energy consists of the
contributions from one-electron integrals fii
and two-electron Coulomb integrals Jij and
exchange integrals Kij  5. At the
Hartree-Fock Level there are two possible
Coulomb potentials (or operators) between two
electrons i and j Coulomb operator and
exchange operator Jj(i) is the Coulomb
potential (operator) that i feels from j, and
Kj(i) is the exchange potential (operator) that
that i feels from j.
816. Fock operator (or, average Hamiltonian)
consists of one-electron operators f(i) and
Coulomb operators Jj(i) and exchange
operators Kj(i)
?
? ?
? ?
? Â
? ?
? ? ?
? ?
82Fock matrix for an electron 1? with spin
down  Fb(1?) f b(1?) ?j Jjb(1?) - Kjb(1?)
?j Jja(1?) j1?,Nb
j1?,NaÂ
83f(1) ? -(h2/2me)?12 - ?N ZN/r1N Jja(1) ? ? dr2
fja(2) e2/r12 fja(2) Kja(1) q(1) ? fja(1) ? dr2
fja(2) e2/r12 q(2)
i1,Na j1,Nb
84fjj ? fjja ? ltfja f fjagt Jij ? Jijaa ?
ltfaj(2) Jia(1) faj(2)gt Kij ? Kijaa ? ltfaj(2)
Kia(1) faj(2)gt Jij ? Jijab ? ltfbj(2) Jia(1)
fbj(2)gt
 F(1) f (1) ?j1,n/2 2Jj(1) - Kj(1)
 Energy 2 ?j1,n/2 fjj ?i1,n/2
?j1,n/2 ( 2Jij - Kij ) VNN
Close subshell case ( Na Nb n/2 )
85Hartree-Fock Method
1. Many-Body Wave Function is approximated by
Slater Determinant 2. Hartree-Fock Equation F
fi ei fi  F Fock operator fi the i-th
Hartree-Fock orbital ei the energy of the i-th
Hartree-Fock orbital
863. Roothaan Method (introduction of Basis
functions) fi ?k cki yk LCAO-MO Â
yk is a set of atomic orbitals (or basis
functions) 4. Hartree-Fock-Roothaan equation
?j ( Fij - ei Sij ) cji 0 Â Fij ? lt ?i F
?j gt Sij ? lt ?i ?j gt 5. Solve the
Hartree-Fock-Roothaan equation
self-consistently
87The Condon-Slater Rules
ltfa(1)fb(2)fc(3)...fd(n) f(1)
fe(1)ff(2)fg(3)...fh(n)gt ltfa(1) f(1) fe(1)gt
lt fb(2)fc(3)...fd(n) ff(2)fg(3)...fh(n)gt
ltfa(1) f(1) fe(1)gt if bf, cg, ...,
dh 0, otherwise ltfa(1)fb(2)fc(3)...f
d(n) V12 fe(1)ff(2)fg(3)...fh(n)gt ltfa(1)
fb(2) V12 fe(1) ff(2)gt lt fc(3)...fd(n)
fg(3)...fh(n)gt ltfa(1) fb(2) V12 fe(1)
ff(2)gt if cg, ..., dh 0, otherwise
88 ------- the lowest
unoccupied molecular orbital ? -------
the highest occupied molecular orbital ?
-------
-------
LUMO
HOMO
Koopmans Theorem
The energy required to remove an electron from
a closed-shell atom or molecules is well
approximated by minus the orbital energy e of the
AO or MO from which the electron is removed.
89 HF/6-31G(d)
Route section water energy
Title 0 1
Molecule
Specification O -0.464 0.177 0.0
(in Cartesian coordinates H
-0.464 1.137 0.0 H 0.441 -0.143 0.0
90Basis Set ?i ?p cip ?p
Gaussian type functions gijk N xi yj zk
exp(-ar2) (primitive Gaussian function) ?p ?u
dup gu (contracted Gaussian-type function,
CGTF) u ijk p nlm
91Basis set of GTFs  STO-3G, 3-21G, 4-31G, 6-31G,
6-31G, 6-31G ----------------------------------
--------------------------------------------------
-? complexity
accuracy
Minimal basis set one STO for each atomic
orbital (AO) STO-3G 3 GTFs for each atomic
orbital 3-21G 3 GTFs for each inner shell
AO 2 CGTFs (w/ 2 1 GTFs) for
each valence AO 6-31G 6 GTFs for each inner
shell AO 2 CGTFs (w/ 3 1 GTFs)
for each valence AO 6-31G adds a set of d
orbitals to atoms in 2nd 3rd rows 6-31G adds
a set of d orbitals to atoms in 2nd 3rd rows
and a set of p functions to hydrogen
Polarization Function
92Diffuse Basis Sets For excited states and in
anions where electronic density is more spread
out, additional basis functions are
needed. Diffuse functions to 6-31G basis set as
follows 6-31G - adds a set of diffuse s p
orbitals to atoms in 1st 2nd
rows (Li - Cl). 6-31G - adds a set of diffuse
s and p orbitals to atoms in
1st 2nd rows (Li- Cl) and a set of diffuse
s functions to H Diffuse functions
polarisation functions 6-31G, 6-31G,
6-31G and 6-31G basis sets. Double-zeta
(DZ) basis set two STO for each AO
936-31G for a carbon atom (10s4p) ? 3s2p
1s 2s 2pi (ix,y,z) 6GTFs
3GTFs 1GTF 3GTFs 1GTF
1CGTF 1CGTF 1CGTF 1CGTF 1CGTF
(s) (s) (s) (p)
(p)
94Minimal basis set One STO for
each inner-shell and
valence-shell AO of each atom
example C2H2 (2S1P/1S)
C 1S, 2S, 2Px,2Py,2Pz
H 1S
total 12 STOs as Basis set Double-Zeta (DZ)
basis set two STOs for each and
valence-shell
AO of each atom example C2H2
(4S2P/2S) C two
1S, two 2S,
two 2Px, two 2Py,two 2Pz
H two 1S (STOs)
total 24 STOs as Basis set
95Split -Valence (SV) basis set Two
STOs for each inner-shell and valence-shell AO
One STO for each inner-shell
AO Double-zeta plus polarization set(DZP, or
DZP) Additional STO w/l quantum
number larger
than the lmax of the valence - shell
? ( 2Px, 2Py ,2Pz ) to H
? Five 3d Aos to Li - Ne , Na -Ar
? C2H5 O Si H3
(6s4p1d/4s2p1d/2s1p)
Si C,O H
96Assignment Calculate the structure, ground state
energy, molecular orbital energies, and
vibrational modes and frequencies of a water
molecule using Hartree-Fock method with 3-21G
basis set. (due 30/10)
97Ab Initio Molecular Orbital Calculation H2O
(using HyperChem)
1. L-Click on (click on left button of Mouse)
Startup, and select and L-Click on
Program/Hyperchem. 2. Select Build and turn
on Explicit Hydrogens. 3. Select Display and
make sure that Show Hydrogens is on L-Click
on Rendering and double L-Click Spheres. 4.
Double L-Click on Draw tool box and double
L-Click on O. 5. Move the cursor to the
workspace, and L-Click release. 6. L-Click on
Magnify/Shrink tool box, move the cursor to the
workspace L-press and move the cursor
inward to reduce the size of oxygen atom. 7.
Double L-Click on Draw tool box, and double
L-Click on H Move the cursor close to
oxygen atom and L-Click release. A hydrogen
atom appears. Draw second hydrogen atom using
the same procedure.
988. L-Click on Setup select Ab Initio
double L-Click on 3-21G then L-Click on
Option, select UHF, and set Charge to 0 and
Multiplicity to 1. Â Â 9. L-Click
Compute, and select Geometry Optimization,
and L-Click on OK repeat the step till
ConvYES appears in the bottom bar. Record
the energy. 10.L-Click Compute and L-Click
Orbitals select a energy level, record
the energy of each molecular orbitals (MO), and
L-Click OK to observe the contour plots of
the orbitals. 11.L-Click Compute and select
Vibrations. 12.Make sure that
Rendering/Sphere is on L-Click Compute and
select Vibrational Spectrum. Note that
frequencies of different vibrational
modes. 13.Turn on Animate vibrations, select
one of the three modes, and L-Click OK.
Water molecule begins to vibrate. To suspend the
animation, L-Click on Cancel.
99The Hartree-Fock treatment of H2
100The Valence-Bond Treatment of H2
f1 ?1(1) ?2(2) f2 ?1(2) ?2(1) ? c1 f1
c2 f2 Â H11 - W H12 - S W H21 - S W H22 -
W Â H11 H22 lt?1(1) ?2(2)H?1(1) ?2(2)gt H12
H21 lt?1(1) ?2(2)H?1(2) ?2(1)gt S lt?1(1)
?2(2)?1(2) ?2(1)gt S2 The Heitler-London
ground-state wave function ?1(1) ?2(2) ?1(2)
?2(1)/?2(1S)1/2 a(1)b(2)-a(2)b(1)/?2
0
101Comparison of the HF and VB Treatments
HF LCAO-MO wave function for H2 ?1(1)
?2(1) ?1(2) ?2(2) ?1(1) ?1(2) ?1(1)
?2(2) ?2(1) ?1(2) ?2(1) ?2(2) H
- H H H H
H H H - VB wave function for
H2 Â ?1(1) ?2(2) ?2(1) ?1(2) Â H
H H H
102 At large distance, the system becomes
H ............
H MO 50 H ............ H 50
H............ H- VB 100 H
............ H The VB is computationally
expensive and requires chemical intuition in
implementation.
The Generalized valence-bond (GVB) method is
a variational method, and thus computationally
feasible. (William A. Goddard III)
103The Heitler-London ground-state wave function
104Assignment 8.4, 8.10, 8.12b, 8.40, 10.5,
10.6, 10.7, 10.8, 11.37, 13.37
105Electron Correlation
Human Repulsive Correlation
106Electron Correlation avoiding each other
Two reasons of the instantaneous
correlation (1) Pauli Exclusion Principle (HF
includes the effect) (2) Coulomb repulsion (not
included in the HF) Beyond the
Hartree-Fock Configuration Interaction
(CI) Perturbation theory Coupled Cluster
Method Density functional theory
107H - (h2/2me)?12 - 2e2/r1 - (h2/2me)?22 - 2e2/r2
e2/r12 H10
H20
H
108H0 H10 H20 y(0)(1,2) F1(1) F2(2) H10 F1(1)
E1 F1(1) H20 F2(1) E2 F2(1) E1 -2e2/n12a0
n1 1, 2, 3, ... E2 -2e2/n22a0 n2 1, 2, 3,
...
Ground state wave function
y(0)(1,2) (1/p1/2)(2/a0)3/2exp(-2r1/a0)
(1/p1/2)(2/a0)3/2exp(-2r1/a0) E(0) -
4e2/a0 Â E(1) lty(0)(1,2) H y(0)(1,2)gt
5e2/4a0 E ? E(0) E(1) -108.8 34.0
-74.8 (eV) compared with exp. -79.0 eV
109Nondegenerate Perturbation Theory (for
Non-Degenerate Energy Levels)
H H0 H H0yn(0) En(0) yn(0) yn(0) is an
eigenstate for unperturbed system H is small
compared with H0
110Introducing a parameter l
H(l) H0 lH H(l) yn(l) En(l) yn(l) yn(l)
yn(0) l yn(1) l2 yn(2) ... lk yn(k)
... En(l) En(0) l En(1) l2 En(2) ... lk
En(k) ...
l 1, the original Hamiltonian
yn yn(0) yn(1) yn(2) ... yn(k) ... En
En(0) En(1) En(2) ... En(k) ...
Where, lt yn(0) yn(j) gt 0, j1,2,...,k,...
111- H0yn(0) En(0) yn(0)
- solving for En(0), yn(0)
- H0yn(1) H yn(0) En(0) yn(1) En(1)yn(0)
- solving for En(1), yn(1)
H0yn(2) H yn(1) En(0) yn(2) En(1)yn(1)
En(2)yn(0) ? solving for En(2),yn(2)
112 Â Multiplied ym(0) from the left and
integrate, ltym(0) H0 yn(1) gt lt ym(0) H'
yn(0) gt lt ym(0)yn(1) gtEn(0) En(1) ?mn
ltym(0)yn(1) gt Em(0)- En(0) lt ym(0) H'
yn(0) gt En(1) ?mn
The first order
For m n,
En(1) lt yn(0) H' yn(0) gt Eq.(1)
For m ? n, ltym(0)yn(1) gt lt ym(0) H' yn(0)
gt / En(0)- Em(0) If we expand yn(1) ? cnm
ym(0), cnm lt ym(0) H' yn(0) gt / En(0)-
Em(0) for m ? n cnn 0.
yn(1) ?m lt ym(0) H' yn(0) gt / En(0)-
Em(0) ym(0) Eq.(2)
113The second order
ltym(0)H0yn(2) gt lt ym(0)H'yn(1) gt lt
ym(0)yn(2) gtEn(0) lt ym(0)yn(1) gtEn(1)
En(1) ?mn  Set m n, we have
En(2) ?m ? n ltym(0) H' yn(0) gt2 /
En(0)- Em(0) Eq.(3)
114Discussion (Text Book page 522-527)
a. Eq.(2) shows that the effect of the
perturbation on the wave function yn(0) is to
mix in contributions from the other zero-th
order states ym(0) m?n. Because of the factor
1/(En(0)-Em(0)), the most important
contributions to the yn(1) come from the states
nearest in energy to state n. b. To evaluate the
first-order correction in energy, we need only
to evaluate a single integral Hnn to evaluate
the second-order energy correction, we must
evalute the matrix elements H between the n-th
and all other states m. c. The summation in
Eq.(2), (3) is over all the states, not the
energy levels.
115Moller-Plesset (MP) Perturbation Theory The MP
unperturbed Hamiltonian H0 H0 ?m
F(m) where F(m) is the Fock operator for
electron m. And thus, the perturbation H
 H H - H0  Therefore, the unperturbed
wave function is simply the Hartree-Fock wave
function ?. Â Ab initio methods MP2, MP4
116Example One Consider the one-particle,
one-dimensional system with potential-energy
function  V b for L/4 lt x lt 3L/4, V 0 for
0 lt x ? L/4 3L/4 ? x lt L and V ? elsewhere.
Assume that the magnitude of b is small, and can
be treated as a perturbation. Find the
first-order energy correction for the ground and
first excited states. The unperturbed wave
functions of the ground and first excited states
are ?1 (2/L)1/2 sin(?x/L) and ?2 (2/L)1/2
sin(2?x/L), respectively.
117Example Two As the first step of the
Moller-Plesset perturbation theory, Hartree-Fock
method gives the zeroth-order energy. Is the
above statement correct?
Example Three Show that, for any perturbation
H, E1(0) E1(1) ? E1 where E1(0) and E1(1)
are the zero-th order energy and the first order
energy correction, and E1 is the ground state
energy of the full Hamiltonian H0 H.
Example Four Calculate the bond orders of Li2
and Li2.
118Perturbation Theory for a Degenerate Energy Level
Hydrogen Atom n3 3s, 3px
, 3py , 3pz , 3d1-5 n2
2s, 2px , 2py , 2pz  n1 1s
B / ?
H H0 H H0yn(0) Ed(0) yn(0)
n1,2,...,d H is small compared with H0
119(1)Apply the results of nondegenerate
perturbation theory
cnm lt ym(0) H' yn(0) gt / En(0)- Em(0) ?
? for 1 ? m, n ? d  WRONG ! something very
different !
(2) What happened ?
c1 y1(0) c2 y2(0) ... cd yd(0) is an
eigenstate for H0 There are infinite number of
such states that are degenerate.Â
120When H is switched on, these states are no
longer degenerate, and nondegenerate eigenstates
of H0 H appear ! Therefore, even for zero-th
order of eigenstates, there are sudden changes !
(3) Introducing a parameter l
H(l) H0 lH H(l) yn(l) En(l) yn(l) l 1,
the original Hamiltonian
yn(l) fn(0) l yn(1) l2 yn(2) ... lk
yn(k) ... En(l) Ed(0) l En(1) l2 En(2)
... lk En(k) ... fn(0) ?k ck yk(0)
121- H0yn(1) H fn(0) Ed(0) yn(1) En(1)fn(0)
- solving for En(1), fn(0) , yn(1)
- Multiplied ym(0) from the left and integrate,
- ltym(0) H0 yn(1) gt lt ym(0) H' fn(0)
gt - lt ym(0)yn(1) gtEd(0) En(1) ltym(0) fn(0) gt
- ltym(0)yn(1) gt Em(0)- Ed(0) lt ym(0) H'
fn(0) gt En(1) lt ym(0) fn(0) gt - For 1 ? m ? d,
- ?n lt ym(0) H' yn(0) gt - Em(1)?mn cn 0
- Em(1) lt fm(0) H' fm(0) gt
Assignment 2 9.2, 9.4a, 9.9, 9.18, 9.24
122Configuration Interaction (CI)
123Single Electron Excitation or Singly Excited
124Double Electrons Excitation or Doubly Excited
125Singly Excited Configuration Interaction (CIS)
Changes only the excited states
126Doubly Excited CI (CID) Changes ground
excited states
Singly Doubly Excited CI (CISD) Most Used
CI Method
127Full CI (FCI) Changes ground excited states
...
128Coupled-Cluster Method
y eT y(0) y(0) Hartree-Fock ground state wave
function y Ground state wave function T T1
T2 T3 T4 T5 Tn n electron
excitation operator
T1
129Coupled-Cluster Doubles (CCD) Method
yCCD eT2 y(0) y(0) Hartree-Fock ground state
wave function yCCD Ground state wave
function T2 two electron excitation operator
T2
130Complete Active Space SCF (CASSCF)
Active space
All possible configurations
131Density-Functional Theory (DFT)
Hohenberg-Kohn Theorem The ground state
electronic density ?(r) determines uniquely
all possible properties of an electronic system
?(r) ? Properties P (e.g. conductance), i.e.
P ? P?(r) Density-Functional Theory
(DFT) E0 - (h2/2me)?i lt?i ?i2 ?i gt- ?? ? dr
Zae2?(r) / r1a (1/2) ? ? dr1 dr2
e2/r12 Exc?(r) Kohn-Sham Equation FKS
yi ei yi FKS ? - (h2/2me)?i?i2 - ?? Zae2 / r1a
?j Jj Vxc Vxc ? dExc?(r) / d?(r)
132 Ground State Excited State CPU Time
Correlation Geometry Size Consistent
(CHNH,6-31G) HFSCF ?
? 1 0
OK ? DFT
? ?
1 ?
? CIS ?
? lt10
OK ? CISD
? ?
17 80-90 ?
?
(20
electrons) CISDTQ ? ?
very large 98-99 ?
? MP2 ?
? 1.5
85-95 ? ?
(DZP) MP4
? ?
5.8 gt90 ?
? CCD ? ?
large gt90
? ? CCSDT ?
? very large
100 ? ?
133Relativistic Effects
Speed of 1s electron Zc / 137 Heavy elements
have large Z, thus relativistic effects
are important. Dirac Equation Relativistic
Hartree-Fock w/ Dirac-Fock operator
or Relativistic Kohn-Sham calculation
or Relativistic effective core potential (ECP).
134Four Sources of error in ab initio Calculation
(1) Neglect or incomplete treatment of electron
correlation (2) Incompleteness of the Basis
set (3) Relativistic effects (4) Deviation from
the Born-Oppenheimer approximation
135Semiempirical Molecular Orbital Calculation
136LCAO-MO fi ?r cri yr  ?s ( Heffrs - ei
Srs ) csi 0 Â Heffrs ? lt ?r Heff ?s
gt Srs ? lt ?r ?s gt
- Parametrization
- Heffrr ? lt ?r Heff ?r gt
- minus the valence-state
ionization - potential (VISP)
137 Atomic Orbital Energy
VISP --------------- e5 -e5 --------------- e
4 -e4 --------------- e3 -e3 --------------
- e2 -e2 --------------- e1 -e1 Â Heffrs
½ K (Heffrr Heffss) Srs K 1?3
138CNDO, INDO, NDDO (Pople and co-workers) Hamiltoni
an with effective potentials Hval ?i -(h2/2m)
?i2 Veff(i) ?i?jgti e2 / rij
two-electron integral (rstu) lt?r(1) ?t(2)
1/r12 ?s(1) ?u(2)gt  CNDO complete neglect of
differential overlap (rstu) ?rs ?tu (rrtt) ?
?rs ?tu ?rt
139INDO intermediate neglect of differential
overlap (rstu) ?rs ?tu (rrtt) when r, s, t
u not on same atom (rstu) ? 0 when r, s, t and
u are on the same atom. NDDO neglect of
diatomic differential overlap (rstu) 0 if r
and s (or t and u) are not on the same
atom. CNDO, INDO are parametrized so that the
overall results fit well with the results of
minimal basis ab initio Hartree-Fock
calculation. CNDO/S, INDO/S are parametrized to
predict optical spectra.
140PRDDO H ?i -(h2/2m) ?i2 Veff(i) ?i?jgti
e2 / rij Basis set the minimum basis set
(STO-3G) Â PRDDO partial retention of diatomic
differential overlap (rstu) 0 if r and s
(and t and u) are different basis functions.
141MINDO, MNDO, AM1, PM3 (Dewar and co-workers,
University of Texas, Austin) Â MINDO modified
INDO MNDO modified neglect of diatomic overlap
AM1 Austin Model 1 PM3 MNDO parametric method
3 MINDO, MNDO, AM1 PM3 Â based on INDO
NDDO reproduce the binding energy
142Semiempirical M.O. Method
Fock Matrix
Key How to approximate ?
MNDO-PM3
(using NDDO)
143Where,
the ionization potential
One centre integrals (given)
Core-electron attraction (given)
characteristic of monopole, dipole, quadrupole
charge separations
144Molecular Mechanics (MM) Method F Ma F
Force Field
145Molecular Mechanics Force Field
- Bond Stretching Term
- Bond Angle Term
- Torsional Term
- Non-Bonding Terms Electrostatic Interaction
van der Waals Interaction
146Bond Stretching Potential Eb 1/2 kb
(Dl)2 where, kb stretch force
constant Dl difference between equilibrium
actual bond length
Two-body interaction
147Bond Angle Deformation Potential Ea 1/2 ka
(D?)2 where, ka angle force
constant D? difference between equilibrium
actual bond angle
?
Three-body interaction
148Periodic Torsional Barrier Potential Et
(V/2) (1 cosn? ) where, V rotational
barrier t torsion angle n
rotational degeneracy
Four-body interaction
149Non-bonding interaction van der Waals
interaction for pairs of non-bonded atoms
Coulomb potential for all pairs of charged
atoms
150MM Force Field Types
- MM2 Small molecules
- AMBER Polymers
- CHAMM Polymers
- BIO Polymers
- OPLS Solvent Effects
151Summary
Hamiltonian H ??(-h2/2ma)??2 - (h2/2me)?i?i2
???? ZaZbe2/rab - ?i ?? Zae2/ria ?i ?j e2/rij
The variation theorem
Consider a system whose Hamiltonian operator H is
time independent and whose lowest-energy
eigenvalue is E1. If f is any well-behaved
function that satisfies the boundary conditions
of the problem, then ? f H f dt / ? f f
dt gt E1
 Variational Method
(1) Construct a wave function ?(c1,c2,???,cm) (2)
Calculate the energy of ? E? ?
E?(c1,c2,???,cm) (3) Choose cj (i1,2,???,m)
so that E? is minimum
152Extension of Variation Method
For a wave function f which is orthogonal to the
ground state wave function y1, i.e. ?dt fy1
0 Ef ?dt fHf / ?dt ff gt E2 the first
excited state energy
The Pauli principle
two electrons cannot be in the same state
the wave function of a system of electrons must
be antisymmetric with respect to interchanging of
any two electrons.
153Hartree-Fock Equation
f(1) J2(1) - K2(1) f1(1) e1 f1(1) f(2)
J1(2) - K1(2) f2(2) e2 f2(2)
Fock Operator
F(1) ? f(1) J2(1) - K2(1) Fock operator for
1 F(2) ? f(2) J1(2) - K1(2) Fock operator
for 2
LCAO-MO f c1y1 c2y2
Molecule Bond order De/eV
H2 1/2 2.79
H2 1
4.75 He2 1/2
1.08 He2
0 0.0009 Li2
1 1.07
Be2 0
0.10 C2 2
6.3 N2
1/2 8.85
N2 3
9.91 O2
2 5.21
Express Hartree-Fock energy in terms of fi, Jij
Kij
154Basis set of GTFs  STO-3G, 3-21G, 4-31G, 6-31G,
6-31G, 6-31G ----------------------------------
--------------------------------------------------
-? complexity
accuracy
Gaussian 98 Input file
HF/6-31G(d)
Route section water energy
Title 0 1
Molecule
Specification O -0.464 0.177 0.0
(in Cartesian coordinates H
-0.464 1.137 0.0 H 0.441 -0.143 0.0
Comparison of the HF and VB Treatments
Electron Correlation
155Beyond the Hartree-Fock Configuration
Interaction (CI) Perturbation theory Coupled
Cluster Method Density functional theory
En(1) lt yn(0) H' yn(0) gt
Moller-Plesset (MP) Perturbation Theory The MP
unperturbed Hamiltonian H0 H0 ?m
F(m) where F(m) is the Fock operator for
electron m. And thus, the perturbation H
 H H - H0 Â
156 Ground State Excited State CPU Time
Correlation Geometry Size Consistent
(CH3NH2,6-31G) HFSCF ?
? 1 0
OK ? DFT
? ?
1 ?
? CIS ?
? lt10
OK ? CISD
? ?
17 80-90 ?
?
(20
electrons) CISDTQ ? ?
very large 98-99 ?
? MP2 ?
? 1.5
85-95 ? ?
(DZP) MP4
? ?
5.8 gt90 ?
? CCD ? ?
large gt90
? ? CCSDT ?
? very large
100 ? ?