Spectral Analysis - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Spectral Analysis

Description:

5 Var(X) (Symmetric from to 2 ) We examine if low or high frequency dominates. ... Xt(vj) and Xt(vk) are orthogonal. Variance decomposition. Var(Xt) = Var(Xt(vk) ... – PowerPoint PPT presentation

Number of Views:32
Avg rating:3.0/5.0
Slides: 15
Provided by: junso
Category:

less

Transcript and Presenter's Notes

Title: Spectral Analysis


1
Lecture 3
  • Spectral Analysis

2
Frequency domain approach
  • Examines contributions of different frequencies
    in explaining the variance.
  • Analysis based on the estimated spectral density
    function.
  • Provides the information on the properties of the
    time series data.
  • Applied to econometric problems.

3
Example
  • Monthly growth rate of IP (p. 169), T 513
  • peaks at k 18, 44, 89, 128, 171, 210
  • cycle vk k/T 18/513, 44/513, .., 210/513
  • period Tk 1/vk 28.5, 12, months
  • (2.5 yrs business cycle, 12, .. seasonality,, )
  • frequency wk 2?vk 2?(218/513), ..
  • (per unit time in radian)

4
Use of the spectral density function
  • S(wk) of X, where wk 2?vk
  • Total area under the curve from 0 to ?
  • .5 Var(X)
  • (Symmetric from ? to 2?)
  • We examine if low or high frequency dominates.
  • Examples (using PEST program)
  • unit root process (low)
  • white noise (horizontal line)
  • Stationary MA(1), AR(1) process (high)

5
Background
  • Fourier transformation
  • Xt ? over k0 to T/2 Xt(vk)
  • ? akcos(wkt) bksin(wkt)
  • where ak and bk are orthogonal Fourier
    coefficients.
  • Xt(vj) and Xt(vk) are orthogonal.
  • Variance decomposition
  • Var(Xt) ? Var(Xt(vk)) ? ?k2
  • The variance is decomposed over different
    frequencies.

6
  • Another form of (Discrete) Fourier transformation
  • X(k) T-1 ? Xt exp(-iwkt) Xc(k) - iXs(k)
  • Inverse Fourier transformation
  • Xt sum over k-(T/2) to (T/2) X(k)exp(iwkt)
  • Periodogram
  • I(wk) 2TXc(k)2 Xs(k)2
  • .. Not-consistent estimator for the spectral
    density

7
Spectral density function
  • Spectral density function
  • Sx(wk) (1/2?)? over j - to?j exp(-iwj)
  • (1/2?)?0 2? over j0 to ?j cos(wj)
  • fx(wk) Sx(wk)/ ?0
  • .. Normalized spectral density
  • Inversion
  • ?0 integral from -? to? Sx(wk) dw

8
  • Smoothed spectral density
  • Sx(wk) (1/2?)? over j - to?j exp(-iwj)
  • (1/2?)?0 2? over k1 toM wn(k)?j
    cos(wj)
  • where wn(k) is a lag window (kernel)
  • M is a bandwidth.
  • Note Automatic bandwidth by Andrews(1991)

9
Applications to Econometrics
  • Spectral density at frequency zero
  • Sx(0) (1/2?)? over j - to ?j
  • longrun variance 2? Sx(0)
  • ?2 ?0 2? over k1 toM wn(k)?j
  • captures unknown error structure
  • (non-parametric estimation)

10
  • Autocorrelation-heteroskedasticity consistent
    standard error in regression
  • Recall
  • Whites Heteroskedasticity consistent standard
    error
  • Extension to allow for autocorrelation as well.
  • Example

11
  • Hannans efficient estimator
  • yt Xt? ut with unknown autocorrelation
  • Transform yt Xt in frequency domain, then
  • do OLS on the transformed variables, say yt
    Xt.
  • Transformation is based on the cross spectral
    density of
  • yt ut (also, Xt ut), then inverse
    transformation

12
  • Goodness-of-fit test
  • .. Testing for a white noise process (or any
    ARMA)
  • Based on the cumulative peridogram
  • Max difference follows Kolmogorov-Smirnov
    statistics.

13
Cross, coherence phase spectra
  • Cross Spectrum
  • Using cross covariance, ?XY(j)
  • Coherence Spectrum
  • like correlation coefficient
  • Phase spectrum
  • lead lag analysis (like Causality)

14
  • Bi-spectrum
  • Bi-varaite joint density
  • S(w1, w2)
  • Testing for linearity
Write a Comment
User Comments (0)
About PowerShow.com