MEMETIC ALGORITHMS - PowerPoint PPT Presentation

1 / 65
About This Presentation
Title:

MEMETIC ALGORITHMS

Description:

Comparative Glossary. In GAs we generally define ... 'Invariant' glossary (continuation) Reproductive operator (recombination/crossover) ... – PowerPoint PPT presentation

Number of Views:553
Avg rating:3.0/5.0
Slides: 66
Provided by: msof5
Category:

less

Transcript and Presenter's Notes

Title: MEMETIC ALGORITHMS


1
MEMETIC ALGORITHMS
  • Pablo Moscato
  • DENSIS FEEC - UNICAMP
  • moscato_at_densis.fee.unicamp.br
  • www.densis.fee.unicamp.br/moscato
  • Memetic Algorithms Home Page
  • www.densis.fee.unicamp.br/moscato/memetic_home.ht
    ml

2
GAs and MAs
  • For GAs population ? group of living
    organisms
  • For MAs population ? group with knowledge of
    solution methods for the problem... (and the
    class !)
  • Knowledge means... proper and rational reuse of
  • Heuristics (constructive and iterative
    improvement)
  • Approximation Algorithms - PTAS - FPTAS
  • Exact methods (BnB - truncated BnB - Branch and
    Cut)
  • Properties of the best or optimal solution(s)
  • Transformations and reductions...
  • Recombination has a more general character than
    GAs

3
Basic Memetic Algorithm
4
Cultural Evolution
  • Shared characteristics are not inherited due to
    simple processes of recombination of previous
    solutions
  • Examples
  • Formula 1 (technological evolution)
  • Martial Arts
  • The use of totally random mutation has a
    significantly less important rôle.
  • Heavy use of historical information and an
    external logic to speed-up the process.

5
Memetic Algorithms for combinatorial optimization
problems
  • Meme word introduced by Richard Dawkins in
    his best-seller book The Selfish Gene (76).
  • unit of imitation, analogous rôle of gene but
  • in the field of cultural evolution.
  • Memetic Algorithms (MAs, 89) caracterization
    of evolutionary algorithms that can hardly fit
    the GAs methaphor - no, or small, relation with
    biology
  • hybrid GAs ?
    MAs
  • Scatter Search (Glover, 77) ? MAs

6
Comparative Glossary
  • In GAs we generally define
  • Individual (genotype, cromossome, struture,
    string, etc.)
  • chain of genes that codifies for a given
    configuration/solution of the problem at hand.
  • coding (several ways, i.e. general rules, kind
    of art )
  • In MAs prefer to use the word Agent
  • we code not only for a confg./solution., we also
    include resolution methods for the problem (and
    problem class) we wish to solve.
  • Use of multiple representations (cultural
    evolution).

7
Multiple representations - Example
  • Number Partitioning
  • exemple partition of 15, 12, 10, 9, 4 in two
    sets
  • 15, 10 and 12, 4, 9.
  • Binary Direct Representation s (1, -1, 1, -1,
    -1).
  • Ternary Direct s(TD) (1, ?, 1, ?, -1)
  • with greedy decoding ( s (TD,g) -gt s).
  • Binary direct ? Ternary direct.
  • decoding known as growth function, since it
    maps from genotype s(TD) to phenotype s.

8
Multiple representations (continuation)
  • Genotype a configuration in search space.
  • Phenotype ? feasible solution (not always the
    case...).
  • Diferent decoders give birth do diferent
    representations (since the same genotype can give
    diferent phenotypes)
  • Generally, decoding/growth function is a
    deterministic process (though randomization may
    be useful for sampling, specially in problems
    beyond NP).
  • A phenotype can be the image of several
    genotypes.
  • GAs are generally more related with a single type
    of decoding (MAs have implicit more freedom).

9
Other types of multiple representations
  • Sometimes the best representation is not the
    naive one for a given problem
  • Exemple 1 binary matrix representation
  • xij 1 if the integers ai and aj are in
    diferent partitions xij 0, otherwise.
  • To discuss advantages and disadvantages...
  • Exemple 2 tree representation
  • Fact Every tree has a 2-coloring ? we can
  • then represent two partitions...

10
Tree representation for number partitioning
  • In the previous example...
  • phenotype partition in two groups
  • 15, 10 and 12, 4, 9.
  • Genotype is a tree


11
Chain or path representation
  • Exemple 3 let the phenotype be the partition
  • 125, 365, 40, 120, 237, 43, 158, 101
  • It can be represented by the genotype
  • 125 -- 237 -- 365 -- 43 -- 40 -- 158 -- 120 --
    101
  • cost 650 - 539 111
  • Local search if we pick a subpath that starts
    and ends with
  • a diferent colour (for instance 237 -- 365 -- 43
    -- 40)
  • and we change switch the endpoints we get
  • 125 -- 40 -- 43 -- 365 -- 237 -- 158 -- 120 --
    101
  • cost 525 - 664 139


12
Mutation and Representation
  • For GAs we say
  • mutation
  • small random perturbation that modifies a
    chromosome
  • For MAs
  • totally random mutation is allowed...
  • Sometimes is needed but is not very efficient.
  • small... it depends on the representation.
  • Mutation is important
  • for some specific type of non-structured
    instances or when recombination is not working
    well.
  • when diversity crisis occurs


13
Invariant glossary of GAs and MAs
  • Population
  • a set of individuals (resp. agents) that
    represent the associated configurations in the
    search space.
  • Generation
  • arbitrary separation of different populations as
    time evolves
  • Fitness function (we prefer guiding function)
  • it can be a multiobjetive function, even in the
    case of a single objective function naturally
    associated with the problem.

14
Invariant glossary (continuation)
  • Reproductive operator (recombination/crossover)
  • In MAs we classify
  • crossover ? recombination
  • crossover
  • only between two genotypes
  • low complexity - maximum O(n log n)
  • recombination
  • it can be blind ou myopic or have
  • complete knowledge

15
Representation - Good and desired features
  • Complete representation and valid representation.
  • Complete all feasible solution of the problem is
    represented by at least one configuration in
    configuration space.
  • Valid at least one of the optimal solutions of
    the problem is represented by one configuration
    in the search space. Complete -gt Valid, the
    inverse is not true.
  • Mutation small structural changes should have as
    a consequence small variations of the objective
    function and in the guiding function as well.
  • Homework Study several natural mutations for the
    representations we discussed for the number
    partitioning problem. Worst-case vs. Average-case
    analysis ?

16
Representation - Good problems ?
  • Some problems apparently have some naturally good
    representations for GAs o MAs.
  • Problems in the DLS class (discrete linear
    subset).
  • Problems with low epistasis.
  • DLS (Definition) Let N1, ..., n and let F be
    a set of subsets of N, F ? 2N with the property
    that no set in F is properly contained in another
    one. The problem DLS (F, w) is the combinatorial
    optimization problem with feasible set F and with
    cost function
  • cost(f) ? wi f?F, ? i ? f
  • where w (w1, ..., wn) is a weight vector
    (given) in Rn.

17
Problems in DLS, are they all NP-Hard ?
  • By the previous definition, the answer is No.
    Examples...
  • The Min TSP is a DLS problem. Let n be the
    number of edges of a complete graph K_n, then F
    exactly contains the set of integers (i.e., the
    integers that represent edges) corresponding to
    tours in K_n. The vector of costs w is a 1-dim
    array representation of the distance matrix
    between cities.
  • The Minimum Spanning Tree, is a polynomial-time
    problem that also belongs to DLS.
  • Shortest-Path, Min-cost flow, Maximum weight set
    in a matroid, Weighted matroid intersection, and
    weighted 3-matroid intersection also belong to
    DLS.

18
The traveling salesman problem (from Chvatals
page)
  • 1800-1900 first descriptions of the problem
  • 1920-1930 problem becomes well defined
  • 1940-50 it starts to be recognized as hard
  • 1954 an instance with 42 cities is solved to
    optimality.

19
120 cities of West Germany (1977)
20
532 cities from the United States (1987) att532
21
Optimal solution for instance pcb3038
22
Largest instance solved to optimality (1998)
usa13509
23
Moscato and Tinetti ( 92, MA for the TSP)
solution pocket/fitness solution current/fitness
  • PocketPropagation()
  • Agents use three different heuristics (2-opt,
    one-city insertion, e two-city insertion ).
  • Solutions get modified when they go up the
    hierarchy
  • example agents 10 -gt 3 -gt 1...
  • Transputers (constraint and inspiration)

24
Strategic Edge Crossover (Norman Moscato, 92)
  • based on Edge Recombination (Whitley, 91)
  • generalized to the ATSP, called SAX
  • (Buriol, França, Moscato, 99)
  • selection of two tours A and B
  • EdgeMap (auxiliary data structure)
  • build strings with edges from A and B.
  • Karps patching heuristic !!
  • Faster patching methods can be used.
  • Very good results for ATSP instances !!

25
DPX para o TSP (Merz Freisleben, 96)
  • Objetive Recombination with a good synergy with
    a powerful local search scheme (based on a
    version of Lin-Kernighan)
  • Problem Lin-Kernighans local minima have many
    edges in common. Recombination operators that do
    not take this into account would suffer great
    diversity losses.
  • Solution Forbid edges in (A-B) ? (B-A) !
  • while including all edges in (A ? B)
  • Property d(y,A) d(A,B) (suggested the name)
  • Result Excellent ! (best 2-parent MA ever
    built !)

26
MFNNRER (Holstein Moscato, 98)
  • MFNNRER Multiple Fragment with Nearest
    Neighbour Repair Edge Recombination
  • 1) Find all edges in SA ? B and include them in
    the child
  • 2) Order edges in L(A ? B) - S (A-B) ? (B-A)
    in incresing length order (breaking ties at
    random).
  • 3) Starting with the first edge in L, add it to
    the child
  • if a) no city should have three edges
    incident to it
  • b) no subtour should be formed
  • 4) Run a Nearest Neighbour heuristic having as
    input the cities that only have 0 or 1 edges
    incident in the strings formed on step 3.

27
Why so many recombination operators ?
  • Actually, they all reflect an underlying, more
    general strategy
  • 1) Find some kind of similarity between two
    solutions A and B, call the set SA ? B and
    insert it in the child.
  • 2) Define two sets S(in) and S(out) of desired
    and non-desired features (one or both can be
    empty).
  • 3) Trying to keep all elements of S in the new
    solution, try to find another feasible solution
    that maximizes (respectively, minimize) the
    elements from S(in) (respectively, from S(out)).

28
Why so many recombination operators ?
(continuation)
  • In the previous examples
  • MFNNRER was used in an MA with a very simple
    local search scheme (2-opt).
  • SAX is being used in an MA with a local search
    restricted to a subset of the 3-opt neighborhood.
  • SAX e MFNNRER try to give priority to edges
    present in both parent solutions.
  • Fact two 2-opt tours have on average 66 of
    the edges in common (intensification is
    needed).
  • DPX explicitly forbids edges which are not
    common (diversification is needed due to LK
    neighborhood used).

29
New combinatorial optimization problems !!
  • Recombination can be regarded as a heuristic way
    of solving new types of combinatorial
    optimization problems !!!
  • THIRD (BETTER-THAN-WORST) HAMILTONIAN CYCLE
  • Instance Graph G(V,E,W), and two hamiltonian
    cycles C1 and C2 of G, such that C1?C2, and
    w.l.o.g. Long(C1) ? Long(C2).
  • Question ? another C, Hamiltonian cycle of
    G,
  • such that C? C1, C2 and Long(C) lt Long(C2)
    ?
  • Unknown computational complexity !!!
    (NP-complete ?)
  • This means.... Less chances of being fired !
  • (not only MAs help us to address NP-hard
    problems...
  • ...they help us to create new ones
    !!)

30
A chance to revisit old friends...
  • Recombination would also help us to revisit some
    old combinatorial optimization problems.
  • RESTRICTED HAMILTONIAN CYCLE (RHC)
  • Instance Graph G(V,E) and a Hamiltonian path P
    of G.
  • Question ? a Hamiltonian cycle in G ?
  • Computational complexity known !!!
  • NP-complete... (see Papadimitriou Steiglitz,
    Combinatorial Optimization, Chapter 19, pp.
    477-480).
  • This means.... May be there is a way of reducing
    RHC to our previous problem and prove it
    NP-Complete. (???)

31
Recombination Procedure (SAX)
32
Local Search Algorithm Recursive Arc Insertion
(RAI)(Buriol, França, and Moscato)
  • Recursive application of 3-changes
  • Key idea divide the tour in a subtour and a path
    string and insure feasibility back as soon as a
    decreasing tour can be constructed.

33
Recursive Arc Insertion - Step-by-Step
i
i
i
j
j
i
i
i
j
j
j
34
Computational Results with RAI and four
recombinations
35
Computational results with other methods for the
ATSP
36
Structured vs. non-sturctured populations
  • 30 runs on each of the 27 instances of the ATSP
    available from the TSPLIB which were solved to
    optimality.

37
MAs with Multiple Representations
  • Example let us suppose we have a phenotype
  • 125, 365, 40, 120, 237, 43, 158, 101
  • it can be represented by the genotype
  • 125 -- 237 -- 365 -- 43 -- 40 -- 158 -- 120 --
    101
  • cost 650 - 539 111
  • we can get the subpath 237 -- 365 -- 43 -- 40
  • and make a 2-opt move we get
  • 125 -- 40 -- 43 -- 365 -- 237 -- 158 -- 120 --
    101
  • cost 525 - 664 139
  • ... Lesson we can use 2-opt-like algorithms for
    this problem...


38
Future issues - gt MemePool as a generic framework
  • MAs with multiple representations
  • Frameworks for MAs to exploit code reuse
  • MemePool Project
  • Polynomial Merger Algorithms
  • Problems outside NP
  • Linear Programming ?
  • Maximum Cardinality Matching ?
  • Problems in PSPACE ?
  • GAs vs MAs
  • Complete Memetic Algorithms


39
Representação e Ótimos Locais
  • Analise o problema e a representação
  • max f(x) (x-14)2,
  • s.a. x ? 0,31 e inteiro
  • representação ? binaria, cada inteiro como um
    cromossomo de 5 bits. O vetor (0,0,0,0,0)
    representa 0 e (1,1,1,1,1) -gt representa 31.
  • população inicial ? aleatória
  • tamanho da população e tipo ? 5, fixa, sem
    estrutura.
  • função de fitness ? f(x)

40
Exemplo
  • População inicial gerada
  • x f(x)(x-14)2
  • A1 ? 1 0 0 1 1 19 25
  • A2 ? 0 0 1 0 1 5 81
  • A3 ? 1 1 0 1 0 26 144
  • A4 ? 1 0 1 0 1 21 49
  • A5 ? 0 1 1 1 0 14 0
  • Escolha dos pais com maior fitness ? A3 , A2
  • geração de 1 filho, que substituirá o indivíduo
    com menor fitness A5

Pai 1
Pai 2
41
Exemplo
  • x f(x)(x-14)2
  • Pai1 A2 ? 0 0 1 0 1 5 81
  • Pai2 A3 ? 1 1 0 1 0 26 144
  • Filho ? 0 0 0 1 0 2 144
  • mutação ? 0 0 0 1 0 2 144
  • x f(x)
  • A1 ? 1 0 0 1 1 19 25
  • A2 ? 0 0 1 0 1 5 81
  • A3 ? 1 1 0 1 0 26 144
  • A4 ? 1 0 1 0 1 21 49
  • A5 ? 0 0 0 1 0 2 144

Pai 2
Pai 1
42
Exemplo
  • x f(x)
  • Pai1 A5 ? 0 0 0 1 0 2 144
  • Pai2 A3 ? 1 1 0 1 0 26 144
  • Filho ? 0 0 0 1 0 2 144
  • mutação ? 0 0 0 0 0 0 196
  • x f(x)
  • A1 ? 0 0 0 0 0 0 196
  • A2 ? 0 0 1 0 1 5 81
  • A3 ? 1 1 0 1 0 26 144
  • A4 ? 1 0 1 0 1 21 49
  • A5 ? 0 0 0 1 0 2 144

Pai 1
Pai 2
43
Exemplo
  • x f(x)
  • Pai1 A1 ? 0 0 0 0 0 0 196
  • Pai2 A5 ? 0 0 0 1 0 2 144
  • Filho ? 0 0 0 0 0
  • mutação ? 0 0 0 0 1 1 169
  • x f(x)
  • A1 ? 0 0 0 0 0 0 196
  • A2 ? 0 0 1 0 1 5 81
  • A3 ? 1 1 0 1 0 26 144
  • A4 ? 0 0 0 0 1 1 169
  • A5 ? 0 0 0 1 0 2 144
  • e assim continua...

44
Representação binaria e código de Gray
  • x f(x)(x-7)2 binaria Gray
  • 0 49 0000 0000
  • 1 36 0001 0001
  • 2 25 0010 0011
  • 3 16 0011 0010
  • 4 9 0100 0110
  • 5 4 0101 0111
  • 6 1 0110 0101
  • 7 0 0111 0100
  • 8 1 1000 1100
  • 9 4 1001 1101
  • 10 9 1010 1111
  • 11 16 1011 1110
  • 12 25 1100 1010
  • 13 36 1101 1011
  • 14 49 1110 1001
  • 15 64 1111 1000

45
Representação, código de Gray e fitness
landscape
  • f(x)(x-7)2 delta_f binaria diff
  • 49 1564-49 0000 4
  • 36 1349-36 0001 1
  • 25 1125-36 0010 2
  • 16 9 0011 1
  • 9 7 0100 3
  • 4 5 0101 1
  • 1 3 0110 2
  • 0 1 0111 1
  • 1 1 1000 4
  • 4 3 1001 1
  • 9 5 1010 2
  • 16 7 1011 1
  • 25 9 1100 3
  • 36 11 1101 1
  • 49 13 1110 2
  • 64 15 1111 1

46
Representação, código de Gray e fitness
landscape
  • delta_f diff
  • 15 4 60 suma total
  • 13 1 13 representação binaria
  • 11 2 22
  • 9 1 9 601322... 240
  • 7 3 21
  • 5 1 5 suma total
  • 3 2 6 representação de Gray
  • 1 1 1
  • 1 4 4 151311... 128
  • 3 1 3
  • 5 2 10
  • 7 1 7 240/128 1.875
  • 9 3 27 (métrica de comparação ?)
  • 11 1 11
  • 13 2 26
  • 15 1 15

47
Representação - Hipercubo binario
7
15
3
6
14
11
2
4
5
13
12
0
1
8
9
10
48
Representação - Código de Gray
5
10
2
4
11
13
3
7
6
9
8
0
1
15
14
12
49
Representação, código de Gray e fitness
landscape
  • Problema cómo avaliar uma métrica dada ?
  • 1) Análise estatística
  • 2) Análise asintótico... (?)
  • 3) Análise do pior caso... pode ser feito, mas é
    pouco relevante para entender a dinámica do
    algoritmo evolutivo.
  • Existe alguma métrica geralmente aceita para
    poder analisar diferentes representações ?
  • Não, mais geralmente se traduz em principios,
    e.g.
  • building block hypotheses, baixa epistasis,
    etc.
  • Ideia básica configurações vizinhas (para a
    mutação) tem que ter valores semelhantes da
    função de fitness (correlação local).

50
Análise estatística e representaçãoes boas
  • Moscato (89) On evolution, search..., discute
    a correlação de ótimos locais como essencial
    para os MAs. Dependencia não só do problema mais
    da instancia !
  • Radcliffe The Algebra of Genetic Algorithms,
    (preprint, 92) discute uma formalização dos GAs
    em termos de formae. Inspiração em Algebra
    Linear.
  • Hoffman (Tese, TU Münich, 93), usa formae
    theory para analizar varios operadores de
    recombinação para o problema do caixeiro
    viajante.
  • Moscato (93) paper em Annals of Operations
    Research, vol. 41.
  • a) representações com ótimos locales são as
    veces naturais para alguns problemas. Se não,
    o problema é cómo desenhar elas para MAs
    eficentes.

51
Análise estatística e representaçãoes boas
  • Moscato (93) paper em Annals of Operations
    Research, vol. 41.
  • b) fitness distance analisis para o problema
    do perceptron binario.
  • c) Tabu Search Muito bom para diversificação
    (sempre que não seja excessiva) da população.
  • Radcliffe Surry (94) dois trabalhos Formal
    Memetic Algorithms, e Fitness variance of
    formae and performance prediction.
  • a) MAs são muito melhores que GAs para alguns
    problemas (e.g. TSP)
  • b) Como Hoffmann, análise estatística e
    possivel com ajuda da simulação computacional.

52
População inicial - GAs e MAs
  • Aleatória ou com uma heurística de construção
  • válido para GAs e MAs
  • perturbação para gerar diferentes indivíduos.
  • perturbação anterior nos dados de entrada da
    heurística -gt construção de diferentes soluções.
  • nos MAs
  • Efeitos transitórios...
  • Causa ótimos locais dos processos de busca podem
    ser bons, mas muito distantes entre eles.

53
Estrutura da População
  • Idéia básica
  • Aproveitar o isolamento por distância entre
    indivíduos para diminuir o problema de perda
    de diversidade.
  • Conceito importante
  • deriva genética (random genetic drift)
  • migração
  • Tarefa veja o que acontece se num GA que você
    tenha já implementado para um problema X a
    função de fitness é constante para todo
    fenotipo...

54
Politicas de reprodução em MAs
  • Escolha dos pais totalmente aleatória.
  • Aleatória mais relacionada com o valor de fitness
  • Otimalidade de Pareto.
  • Crise de diversidade modifica a seleção.
  • quando há estrutura, migração pode ser uma boa
    alternativa (ver por exemplo os artigo de Martina
    Gorges-Schleuter, Mülhenbein, Markus Schwem).

55
Exemplo de uma estrutura de população
solução pocket/fitness solução current/fitness
  • 13 agentes ? 2 cromossomos ? Pocket e Current.
  • para todo agente, pocket é sempre melhor que
    current.
  • agentes 2, 3, e 4 são a sua vez lideres e
    subordinados.
  • se pocket subordinado melhor que pocket do líder
    então troca de solução
  • pocket de 1 terá a melhor solução

56
Moscato - Tinetti (92, MA para o TSP)
solução pocket/fitness solução current/fitness
  • PocketPropagation(), e um processo de migração.
  • Agentes usavam tres diferentes heurísticas
    (2-opt, one-city insertion, e two-city insertion
    ).
  • Soluções modificavam-se ao subir na hierarquia
  • exemplo agentes 10 -gt 3 -gt 1...
  • Transputers (necessidade e inspiração)

57
Recombinação com personalidade ou
behaviourBerretta Moscato, in New Ideas in
Optimization, Corne, Glover, and Dorigo (eds.),
McGraw-Hill, 99
  • R e um operador de recombinação parameterizado
  • conciliador R(A 0 0 1 0 1 , B 1 0 1 1 0 )
    -gt x 0 1 x x -gt yc
  • rebelde R(A 0 0 1 0 1, B 1 0 1 1 0 ) -gt
    1 x x 1 0 -gt yr
  • bajulador R(A 0 0 1 0 1, B 1 0 1 1 0 ) -gt
    0 x x 0 1 -gt yb
  • Propiedade d(yc,A) ? d(A,B) para tudo yc
  • Notar que para yr 1 1 0 1 0 d(yr,A) 5,
    então em geral o comportamento rebelde e
    bajulador não satisfazem a propriedade acima.
  • Em geral GAs só tem tipo conciliador -gt perda de
    diversidade

58
Recombinação com behaviours para o TSP ?
  • R e um operador de recombinação parameterizado
  • conciliador input (A, B) -gt arcos em A ? B
    -gt yc
  • rebelde input (A,B) -gt arcos em B-A -gt
    yr
  • bajulador input (A,B) -gt arcos em A-B -gt
    yb
  • Propriedade d(yc,A) ? d(A,B) para tudo yc
    ainda é válida ?
  • Caso 1 d(A,B) n - A ? B
  • onde n é o número de
    cidades.
  • Caso 2 d(A,B) n - de corners comuns

59
DPX para o TSP (Merz Freisleben, 96)
  • Objetivo Recombinação que colabore com uma busca
    local poderosa (baseada no algoritmo de
    Lin-Kernighan)
  • Problema Mínimos locais do algoritmo de
    Lin-Kernighan têm muitas arestas semelhantes.
    Recombinações que não tenham em conta esse fato
    dão MAs com grandes perdas de diversidade
    (performance ruim).
  • Solução Proibir arestas em (A-B) ? (B-A) !
  • Incluir todas as arestas em (A ? B)
  • Propriedade d(y,A) d(A,B)
  • Resultado Excelente! (com estruturas de dados
    adicionais)

60
Strategic Edge Crossover
  • Introduzido por Norman Moscato, 92
  • baseado no Edge Recombination (Whitley, 91)
  • Composto por quatro fases
  • seleção de dois tours A e B para recombinação
  • construção do EdgeMap
  • geração das strings provenientes de arcos de A e
    B
  • união destas para obter um novo tour factível.
  • Karps patching heuristic !!

61
SAX, o seu ArcMap (Buriol, França, Moscato)
62
CreateString e PatchString
  • Strings provenientes de arcos de A e B geradas
    pelo
  • procedimento chamado CreateString.
  • Algoritmo PatchString factibiliza a rota.

63
MAs for Single Machine Scheduling (with set-up
times and due dates) Mendes, França, Moscato
  • O Problema é definido como
  • Input n tarefas tem que ser processadas em uma
    máquina.
  • p p1, ..., pn ( vetor de tempos de
    processamento
  • para cada tarefa).
  • d d1, ..., dn (vetor de datas de entrega
    ).
  • Sij, n x n, matriz de inteiros, where Sij is
    the tempo de setup que a maquina precisa para
    começa a processar a tarefa j depois de ter
    completado a tarefa i.
  • Task Achar a permutação do conjunto de tarefas
    que minimize a seguinte função objetivo
  • onde ck e o chamado completion time para a
    tarefa k.

64
Algoritmo Memético baseado em busca local

65
Algoritmo Memético para o SMS - Detalhes de
implementação
  • Representação -gt vetor de inteiros 1,...,n
    (permutacões)
  • Recombinação -gt OX (Order Crossover)
  • Pai A 1 3 2 7 8 6 9 4 5
  • Pai B 1 7 8 4 5 6 2 3 9
  • Filho inicial 7 8 6 9
    (Pai A)
  • 1 7 8 6 9 (Pai B)
  • 1 4 7 8 6 9 (Pai B)
  • 1 4 5 7 8 6 9 (Pai B)
  • 1 4 5 7 8 6 9 2 (Pai B)
  • Filho final 1 4 5 7 8 6 9 2 3 (Pai B)

66
Algoritmo Memético para SMS - Detalhes de
implementação
  • Mutação -gt Troca de posição de tarefas
  • Exemplo
  • 1 3 2 7 8 6 9 4 5 ? 1 3 6 7 8 2
    9 4 5
  • Original Mutado
  • Função de Fitness
  • onde Ti e o atraso total para a solução i na
    população.
Write a Comment
User Comments (0)
About PowerShow.com