Title: Computational Web Intelligence for Wired and Wireless Applications
1Computational Web Intelligence for Wired and
Wireless Applications
- Yan-Qing Zhang
- Department of Computer Science
- Georgia State University
- Atlanta, GA 30302-4110
yzhang_at_cs.gsu.edu
2Outline
- Introduction
- Computational Intelligence
- Web Technology
- Computational Web Intelligence (CWI)
- Wired and Wireless Applications
- Conclusion and Future Work
3Introduction
- QoI (Quality of Intelligence) of e-Business
- WI AI IT
- WI (Web Intelligence) exploits Artificial
Intelligence (AI) and advanced Information
Technology (IT) on the Web and Internet . - (Zhong, Liu, Yao and Ohsuga) at Proc. the 24th
IEEE Computer Society International Computer
Software and Applications Conference (COMPSAC
2000),
4Introduction (cont.)
- CI is a subset of AI,
- CI is not a subset of AI, there is an overlap
between AI and CI. - In general, CI?AI.
- crisp logic and rules in AI, and fuzzy logic and
rules in CI (Zadeh). - Motivation Input CI onto Web?
5Computational Intelligence
- fuzzy computing (FC)
- neural computing (NC),
- evolutionary computing (EC),
- probabilistic computing (PC),
- granular computing (GrC)
- rough computing (RC).
-
6Web Technology
- a hybrid technology including computer networks,
the Internet, wireless networks, databases,
search engines, client-server, programming
languages, Web-based software, security, agents,
e-business systems, and other relevant
techniques. -
7Computational Web Intelligence (Zhang and Lin,
2002)
- Uncertainty on the Web (FLINT 2001 at BISC at UC
Berkeley http//www-bisc.cs.berkeley.edu/)
(Zhang, et al, 2001 (a), (b) (c)) - CWI CI WT (Zhang and Lin, 2002)
- CWI is a hybrid technology of Computational
Intelligence (CI) and Web Technology (WT) on
wired and wireless networks. - CWI is dedicating to increasing QoI of
e-Business applications with uncertain data on
the Internet and wireless networks.
8Computational Web Intelligence (cont.) (Zhang and
Lin 2002)
- Fuzzy Web Intelligence
- Neural Web Intelligence
- Evolutionary Web Intelligence
- Probabilistic Web Intelligence
- Granular Web Intelligence
- Rough Web Intelligence
- Hybrid Web Intelligence
9(No Transcript)
10- Preface. . . . . . . . . . . . . . . . . . . . .
. . . . v - Introduction to Computational Web Intelligence
and Hybrid Web Intelligence. . .. . . . . . . . .
. . . . xviii - Part I Fuzzy Web Intelligence, Rough Web
Intelligence and Probabilistic Web Intelligence.
. . . ... . . . . . . . . . . . . . . . . . . 1 - Chapter 1. Recommender Systems Based on
Representations. .. . . 3 - Chapter 2. Web Intelligence Concept-based Web
Search. . . . . . . 19 - Chapter 3. A Fuzzy Logic Approach to Answer
Retrieval from the World-Wide-Web .. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 53 - Chapter 4. Fuzzy Inference Based Server
Selection in Content Distribution Networks. . . .
. . . . . .. . . . . . . . . . . . . . . . . . .
. . . 77 - Chapter 5. Recommendation Based on Personal
Preference. . . ..101 - Chapter 6. Fuzzy Clustering and Intelligent
Search for a Web-based Fabric Database. . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 117 - Chapter 7. Web Usage Mining Comparison of
Conventional, Fuzzy and Rough Set Clustering . .
. . . . .. . . . . . . . . . . . . . . . . . . .
. . . . . . 133 - Chapter 8. Towards Web Search Using Contextual
- Probabilistic Independencies. . . . .. . . . . .
. . . . . . . . . .. . . . . . . 149
11- Part II Neural Web Intelligence, Evolutionary
Web Intelligence and Granular Web
Intelligence 167 -
- Chapter 9. Neural Expert System for Vehicle
Fault Diagnosis - via The WWW. . . .. . . . . . . . .. . . . . . .
. . . . . . . . . . . . . . . . .169 - Chapter 10. Dynamic Documents in The Wired
World.. ... . . . .183 - Chapter 11. Proximity-based Supervision for
Flexible - Web Page Categorization. . . . .. . . . . . .. .
. . .. . . . . . . . . . 205 - Chapter 12. Web Usage Mining Business
Intelligence From Web Logs. . . . 229 - Chapter 13. Intelligent Content-Based Audio
Classification and Retrieval for Web Application.
. . . . . . . . . . . . . . . . . . . . . . . . .
. 257 -
12- Part III Hybrid Web Intelligence and
e-Applications 283 - Chapter 14. Developing an Intelligent
Multi-Regional Chinese Medical Portal. . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .
. . . .285 - Chapter 15. Multiplicative Adaptive User
Preference Retrieval and Its Applications to Web
Search. . . . . . . . . . . . . . . . . . . . . .
. . . . . . .303 - Chapter 16. Scalable Learning Method to Extract
Biological Information from Huge Online
Biomedical Literature. . . . . . . . . . . . . .
. . . . .329 - Chapter 17. iMASS An Intelligent
Multi-resolution Agent-based Surveillance System.
. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . .347 - Chapter 18. Networking Support for Neural
Network-based Web Monitoring and Filtering. . . .
. . . . . . . . . . . . . . . . . . . . . . . . .
. . 369 - Chapter 19. Web Intelligence Web-based BISC
Decision Support System (WBICS-DSS) . . . . . . .
. . . . . . . . . . . . . .. . . . . . . . . . .
.391 - Chapter 20. Content and Link Structure Analysis
for Searching the Web. 431 - Chapter 21. Mobile Agent Technology for Web
Applications. . . . 453 - Chapter 22. Intelligent Virtual Agents and the
WEB. . . . . . . . . . .481 - Chapter 23. Data Mining in Network Security. . .
. . . . . . . . . . . . .501 - Chapter 24. Agent-supported WI Infrastructure
Case Studies in Peer-to-peer Networks. . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 515 - Chapter 25. Intelligent Technology for Content
Monitoring on the Web. .539
13Wired and Wireless Applications
- CWI has various applications in intelligent
e-Business on the Internet and on wireless mobile
networks. - 1. Neural-Net-based online Stock Agents,
- 2. Personalized Mobile Phone Agents,
- 3. Mobile Wireless Shopping Agents,
- 4. Mobile Wireless Fleet Application (Yamacraw
Research Project).
14Fuzzy Neural Web Agents for Stock Prediction
(Zhang, et al, 2001)
To implement this stock prediction system, Java
Servlets, Java Script and Jdbc are used. SQL is
used as the back-end database.
15Fig 1. Graph of Predicted and Real values for
dow stock using complete data (Zhang, et al,
2001)
16Personalized Wireless Information Agents for
Mobile Phones
17Personalized Weather Agent
18- Mobile Wireless Shopping Agents
19Mobile Fleet Application(Yamacraw Research
Project)
- Automated scheduling of pickups and deliveries
- Distributed design
- Emergency Handling
- On-the-fly scheduling of package exchanges
between trucks (rendezvous peer-to-peer
interaction) - Demo
20(No Transcript)
21Truck to Truck Communication
- A truck (Truck1) sends a request to the SyD
Listener on a peer truck using SyD Engine
invoke method. - A selected (Truck2) peer resolves the request
using Its own SyD Listener and Engine. - Sends the result back to the calling peer
(Truck1). - IP address of peers are resolved using the SyD
directory service running in a central location - Each device is capable of functioning as client
or server.
SyD listener
SyD Listener
Truck AppO
Truck AppO
SyD Engine
SyD Engine
TDB
TDB
DBS Database service TDB Truck database
Truck1
Truck2
22Conclusion
- CWI based on CI and WT, a new research area, is
proposed to increase the QoI of e-Business
applications. - CWI has a lot of wired and wireless applications
in intelligent e-Business. FWI, NWI, EWI, PWI,
GWI, RWI, and HWI are major CWI techniques
currently.
23Future Work
- CWI on wired and mobile wireless networks.
- Web Data Mining and Knowledge Discovery.
- Intelligent wireless mobile PDAs (do smart
e-Business, Homeland Security, etc.) - Intelligent Wireless Mobile Agents (in cars,
houses, offices, etc.) - Intelligent Bioinformatics on the Web
- CWI and Grid Computing.
24References
- 1 Y.-Q. Zhang, A. Kandel, T.Y. Lin and Y.Y. Yao
(eds.), Computational Web Intelligence
Intelligent Technology for Web Applications,
Series in Machine Perception and Artificial
Intelligence, volume 58, World Scientific, 2004. - 2 Y.-Q. Zhang and T.Y. Lin, Computational Web
Intelligence (CWI) Synergy of Computational
Intelligence and Web Technology, Proc. of
FUZZ-IEEE2002 of World Congress on Computational
Intelligence 2002 Special Session on
Computational Web Intelligence, pp. 1104-1107,
Honolulu, May 2002. - 3 M. Atlas and Y.-Q. Zhang, Fuzzy Neural Web
Agents for Efficient NBA Scouting, Web
Intelligence and Agent Systems An International
Journal, vol. 6, no. 1, pp. 83-91, 2008. - 4 Y.-Q. Zhang, S. Hang, T.Y. Lin and Y.Y. Yao,
Granular Fuzzy Web Search Agents, Proc. of
FLINT2001, pp. 95-100, UC Berkeley, Aug. 14-18,
2001. - 5 Y.-Q. Zhang, S. Akkaladevi, G. Vachtsevanos
and T.Y. Lin, Fuzzy Neural Web Agents for Stock
Prediction, Proc. of FLINT2001, pp. 101-105, UC
Berkeley, Aug. 14-18, 2001. - 6 Y. Tang and Y.-Q. Zhang, Personalized
Library Search Agents Using Data Mining
Techniques, Proc. of FLINT2001, pp. 119-124, UC
Berkeley, Aug. 14-18, 2001.
25Thank you!