Title: Imposing the Froissart bound on DIS
1 Imposing the Froissart bound on DIS ---gt New
PDF's for the LHC
Martin BlockNorthwestern University
2 OUTLINE
- Data selection The Sieve Algorithm---Sifting
data in the real world, - M. Block, Nucl. Instr. and Meth. A, 556, 308
(2006).
3) Fitting the accelerator data---New evidence
for the Saturation of the Froissart Bound, M.
Block and F. Halzen, Phys. Rev. D 72, 036006
(2005).
34) The Proton Structure Function F2p(x,Q2)
Small-x Behavior of Parton Distributions from
the Observed Froissart Energy Dependence of the
Deep-Inelastic-Scattering Cross Sections, M. M.
Block, Edmund L. Berger and Chung-I tan,
Phys.Rev. Lett. 308 (2006).
5) Global Structure Function Fit and New Gluon
Distributions using the Froissart Bound
Work in progress for this meeting ! M. M. Block,
Edmund L. Berger and Chung-I Tan,
4Part 1 Sifting Data in the Real World, M.
Block, arXivphysics/0506010 (2005) Nucl. Instr.
and Meth. A, 556, 308 (2006).
5Lorentzian Fit used in Sieve Algorithm
6(No Transcript)
7(No Transcript)
8(No Transcript)
9(No Transcript)
10(No Transcript)
11You are now finished! No more outliers. You
have 1) optimized parameters
2)
corrected goodness-of-fit
3) squared error matrix.
12This is FESR(2) derived by Igi and Ishida, which
follows from analyticity, just as dispersion
relations do.
13We can also prove that for odd amplitudes sodd
(n0) sodd (n0).
so that sexpt (n0) s (n0),
dsexpt (n0)/dn ds (n0) /dn, or, its practical
equivalent, sexpt (n0) s
(n0), sexpt (n1) s (n1),
for n1gt n0 for both pp and pbar-p expt cross
sections
14Part 3 Fitting the accelerator data---New
evidence for the Saturation of the Froissart
Bound, M. Block and F. Halzen, Phys. Rev. D 72,
036006 (2005).
15(No Transcript)
16Only 3 Free Parameters
However, only 2, c1 and c2, are needed in cross
section fits !
17Cross section fits for Ecms gt 6 GeV, anchored at
4 GeV, pp and pbar p, after applying Sieve
algorithm
18r-value fits for Ecms gt 6 GeV, anchored at 4
GeV, pp and pbar p, after applying Sieve
algorithm
19What the Sieve algorithm accomplished for the
pp and pbar p data
Before imposing the Sieve algorithm
c2/d.f.5.7 for 209 degrees of freedom Total
c21182.3.
After imposing the Sieve algorithm
Renormalized c2/d.f.1.09 for 184 degrees of
freedom, for Dc2i gt 6 cut Total
c2201.4. Probability of fit 0.2. The 25
rejected points contributed 981 to the total c2
, an average Dc2i of 39 per point.
20Cross section and r-value predictions for
pp and pbar-p
21More LHC predictions, from the Aspen Eikonal Model
Differential Elastic Scattering
Nuclear slope B 19.39 0.13 (GeV/c)-2
selastic 30.79 0.34 mb
22Saturating the Froissart Bound spp and spbar-p
log2(n/m) fits, with worlds supply of data
23Conclusions From hadron-hadron scattering
1) The Froissart bound for gp, pp and pp
collisions is saturated at high energies.
2) At the LHC, stot 107.3 1.2 mb, r
0.1320.001.
3) At cosmic ray energies, we can make accurate
estimates of spp and Bpp from collider data.
4) Using a Glauber calculation of sp-air from
spp and Bpp, we now have a reliable benchmark
tying together colliders to cosmic rays.
24Proton Structure Function F2(x,Q2), from Deep
Inelastic Scattering, Block, Berger Tan,
PRL 99, 88 (2006).
25Reduced Virtual Photon Total Cross Section
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30Froissart bound fit, ln2 W, to reduced cross
sections
31(No Transcript)
32(No Transcript)
33Global (Simultaneous) Fit of F2(x,Q2) to x and Q2
34What the Sieve algorithm accomplished for
F2(x,Q2)
Before imposing the Sieve algorithm
c2/d.f.1.30 for 177 degrees of freedom Total
c2229.4.
After imposing the Sieve algorithm
Renormalized c2/d.f.1.09 for 169 degrees of
freedom, for Dc2i gt 6 cut Total
c2184.2. Probability of fit 0.2. The 8 rejected
points contributed 63.45 to the total c2 , an
average Dc2i of 8 per point.
35(No Transcript)
361 Q2 100 GeV2
Predictions are made using ZEUS data in global
fit Experimental data are from H1
collaboration NO RENORMALIZATION made!
37SUMMARY
.
38- To be done
- Include H1 in global fit, simultaneously fitting
F2, dF2 /d(logQ2), d(logF2) /d(log x)
2. More gluon distributions
3. Quark distributions
4. Recalculate cosmic ray neutrino cross
sections current values are much too big!
Needs x10-8 and Q26400 GeV2 ! Enormous
extrapolation.