Title: Electrical transport in nanoscale tunnel junctions
1Electrical transport in nano-scale tunnel
junctions
Hiroyoshi Itoh Department of Applied Physics,
Nagoya University, Japan
Collaborators
J. Inoue, T. Kondo, S. Honda (Nagoya, Univ.) A.
Umerski, J. Mathon (UK)
Acknowledgements
Grant-in-aid for Science Research C,
JSPS FEMD-CREST (Y. Suzuki team), JST NAREGI
Grid Application Research in Nanoscience, MEXT
21st Century COE Program Frontiers of
Computational Science
2Introduction
Nano-scale junctions
- Magnetic multilayers CIP-GMR, CPP-GMR, exchange
coupling - Fe/Cr, Co/Cu, etc
- Magnetic tunnel junctions TMR
- Fe/Al2O3/Fe, CoFe/Al2O3/Co, Fe/MgO/Fe, etc
- Perovskite manganite junctions TMR, GMR,
exchange coupling - (La-Sr)MnO3/SrTiO3/(La-Sr)MnO3,
(La-Ba)MnO3/LaNiO3/(La-Ba)MnO3
- DMS heterostructures TMR
- (Ga-Mn)As/AlAs/(Ga-Mn)As
- Ferromagnet/ semimetal junction TMR, GMR
- Semiconductor/ semimetal junction
- Ferromagnet/ superconductor detection of spin
polarization
- 2DEG with spin-orbit interaction spin
accumulation, spin Hall effect
3Simplest model
1D parabolic band model
Conductance
Real system
Layered structure 3D, 2D Complex electronic
states spd-orbitals, interface states,
etc Disorder impurity, interfacial randomness,
etc Interaction Hunds coupling, spin-orbit
int., etc
This presentation
Effects of disorder NiFe/Al2O3/Cu/Co,
Fe/MgO/Fe Interface resonant states GaAs/GdAs
4Effect of disorder 1
k (wave vector parallel to layers)
H.Itoh et al. Physica B 237-238 (1997) 264, J.
Phys. Soc. Jpn. 68 (1999) 1632.
Metallic contact
Fermi surface
Fermi surface
ideal interface
In clean system, k conserved.
No current !
5Effect of disorder 1
k (wave vector parallel to layers)
H.Itoh et al. Physica B 237-238 (1997) 264, J.
Phys. Soc. Jpn. 68 (1999) 1632.
Metallic contact
disordered interface
In clean system, k conserved.
No current !
In disordered system, k not conserved.
Diffusive scattering vertex correction
Diffusive scattering (k ? k)
Disorder opens up new channels, and increases
conductance.
6Effect of disorder 2
Symmetry of Bloch wave function
Perfect lattice
Distorted lattice
s
py
No s-py hybridization for k(kx,0)
s-py hybridization
Disorder (lattice distortion, defect, impurity,
etc)
hybridization between Bloch states having
different symmetries
7Quantum oscillation of TMR
S. Yuasa, T. Nagahama, Y. Suzuki, Science 297
234 (2002)
P
AP
8Our calculation
H. Itoh, J. Inoue, A. Umerski, J. Mathon Phys.
Rev. B 68 (2003) 174421.
- Single orbital T.B.
- Disorder in insulator
- Linear response theory
- CPA vertex correction
kcp-period
disorder
kF-period
Present parameters
TMR ratio decreased by disorder
kcp period ? 3 layer kF period ? 5 layer
- period kcp-period ? kF-period
- asymptotic value ? 0
9Clean junction
k conserved
10Disordered junction
k not conserved
Diffusive scattering
?
11MTJ with MgO barrier
Experiments Nat. Mat., Dec. 2003
CoFe/MgO/CoFeB 220_at_R.T., Parkin et al.
(100)-oriented Fe/MgO/Fe 180_at_R.T., Yuasa et
al. single crystalline
Ballistic theories PRB, 2001
Butler et al., Mathon Umerski
Fe/MgO/Fe (001) MR gt 1,000
Conservations of k Bloch wave function
symmetry
12k(0,0)
Fe ?
Fe ?
MgO
Clean junction
Fe D1
MgO D1
Fe
MgO D1
D2
D2, D25
13Our calculation Fe/MgO/Fe
Fe spd-orbitals, bcc str.
MgO sp-orbitals, NaCl str.
s (Mg2)
majority
minority
MgO Lee Wong
gap7.8eV
Fe Papaconstantopoulos
Interface Harrison
p (O2-)
- spd tight-binding model
- linear response theory
- numerical simulation
- (cluster 24aFex24aFe)
- average over 50 samples
Distortion of MgO lattice ? random potential
14Disordered junction (random potential in MgO)
P-alignment
conventional definition
1,600
MR ratio (pessimistic definition)
800
?-spin channel disorder ? conduction through D1
band
15Semiconductor/semimetal junction Interface
resonant states
Semimetal Bi, Sb, graphite, RE pnictide
Carrier hole electron
16Surface or interface states (Shockley states)
- Semiconductor surface
- Nobel metal (111) surface
- d-wave superconductor (110) surface Andreev
bound states
Surface symmetric termination of periodic
potential
If interface states are formed near Fermi level,
transport properties of junction can be
affected.
17Our calculation GaAs/GdAs
J. Inoue, H. Itoh, S. Honda et al., J. Phys.
Cond. Mat. 16 (2004) S5563.
GdAs
semimetal
As
Gd
Ga
GaAs
semiconductor
int. Ga
int. Gd
bulk Gd
18Our calculation GaAs/GdAs
J. Inoue, H. Itoh, S. Honda et al., J. Phys.
Cond. Mat. 16 (2004) S5563.
GdAs
Obtained interface states do not hybridize with
propagating states of bulk GdAs due to k
conservation in clean junction.
semimetal
As
Effects of disorder
Gd
Ga
Formation of interface states
GaAs
semiconductor
Hybridization between interface states and
propagating states
int. Ga
int. Gd
bulk Gd
19Summary
Effect of disorder on transport in nano-scale
junction
Ideal clean system is (sometimes) singular point.
Conservation laws significantly restrict
conduction path. Disorder relaxes the restriction
and opens up new conduction channels.
- Diffusive scattering (k ? k)
- Hybridization between Bloch states having
different symmetries
NiFe/Al2O3/Cu/Co junction Oscillation of MR
ratio around zero with a kF period
Fe/MgO/Fe junction Reduction of MR ratio by
distortion of MgO lattice
Interface resonant states
GaAs/GdAs clean junction Resonant states
formed at GaAs interface
20(No Transcript)
21Quantum oscillation of TMR
22Problems in ballistic theroy
1. Origin of oscillation around zero
Spin diffusion in Cu ?
No! lsf ? 100 nm bulk Cu
Impurity scattering in Cu ?
No! RJ gtgt RCu
2. Period not determined by kF
23Conductance FM/ I/ NM spacer/ FM junction
kF-period
kcp-period
24Transmission probability
FM
I
NM
FM
25Conductance AP alignment
kF-period
kcp-period
diffusive (vertex correction)
specular
26DOS model
Julliere (1975), Maekawa Gäfvert (1982)
Spin polarization
27FM
FM
I
NM
impurity
28Quantum well at spacer
Co
Al-O
Cu spacer
Co
EF
minority
kF
kcp
majority
QW for minority state
29FM/ I/ FM spacer/ NM junction
Experiments FeCo/Al2O3/Fe/Cr
GP increased by disorder TMR increased ? bulk
value
Enhancement of TMR Maximum of TMR at Lspacer8 No
clear oscillation
Enhancement of TMR for thin FM spacer
30Projected Fermi surface
FM/ I/ FM spacer/ NM
FM/ I/ NM spacer/ FM
31Fe/MgO/Fe junction
32Clean junction (without randomness)
MR over 1,000
Large MR ratio conservations of k and band
symmetry
Butler, Mathon Umerski (2001)
33MgO
Fe ? D1
MgO
Fe ? D2
34Transmission probability T(k) clean junction,
dMgO8 ML
Parallel ?
Parallel ?
Antiparallel
k(0,0)
MgO
Fe ?
Fe ?
35Semimetal junction
36???????????????
Bi, Sb, As, C (graphite), R-V (RGd,Er and
VN,P,As)
Small overlap of valence and conduction bands
Semiconductor (SC)
Semimetal (SM)
L.Bolotov et al. (1998)
ErP
Semiconductor
Band overlap, gap controllable
Semimetal
37Ballistic limit (no disorder)
???????Fermi????k????
38k//0 (G-point) dominant contribution
DE0.1t
Small Fermi surface of SM