Eugene Hsu - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Eugene Hsu

Description:

approximate the relationship - input and output style ... Classic system identification task with many standard and robust algorithms [Ljung 1999] ... – PowerPoint PPT presentation

Number of Views:54
Avg rating:3.0/5.0
Slides: 28
Provided by: tclabK
Category:
Tags: eugene | hsu

less

Transcript and Presenter's Notes

Title: Eugene Hsu


1
Style Translationfor Human Motion
  • Eugene Hsu
  • Kari Pulli
  • Jovan Popovic

2006. 9. 26 Sangwook Yoo
2
Outline
  • Introduction
  • Previous Work
  • Correspondence
  • Style Translation
  • Results
  • Conclusion

3
Introduction
  • Human Motion Different Style

Preserve content
Rapid transform
Ex) Normal Walk Sneaky Walk
4
Introduction Get TM
Sneaky Walk motion example
Normal Walk motion example
Learning a Translation Model
5
Introduction Use TM
Translating Motions
6
Previous Work
  • Motion Generation
  • Concatenation, e.g., Kovar et al. 2002
  • Interpolation, e.g., Rose et al. 1998
  • Statistical, e.g., Brand and Hertzmann 2000
  • Physical, e.g., Liu et al. 2005
  • Motion Transformation
  • Motion Warping, Witkin and Popovic 1995
  • Frequency Filtering, Bruderlin and Williams 1995
  • Emotional Transforms, Amaya et al. 1996

7
Correspondence
  • DTW (Dynamic Time Warping)
  • Motion warping approach Witkin and Popovic 1995
  • Temporal warp
  • Applied to correspondence,
  • Stylistically different motion need spatial
    warp
  • Input motion ? spatial/temporal warp ? Output
    motion as close as possible

8
Correspondence
  • Iterative Motion Warping (IMW) algorithm
  • Assumption Single-dimensional motion
  • u input motion, y output motion
  • U diag(u)
  • a scale vector, b offset vector ? Space warp
  • W warp matrix ? Time warp

9
Correspondence
  • Fa, Gb first derivatives of a and b
  • F a
  • -2   2   0   0   0 a1 (a2-a1)
  • 1 -1   0   1   0   0 a2 (a3-a1)/2
  • -      0  -1   0   1   0 a3 (a4-a2)/2
  • 2       0   0  -1   0   1 a4 (a5-a3)/2
  •   0   0   0  -2   2 a5 (a5-a4)

10
Correspondence Full Algorithm
  • Uniformly lengthening y
  • After initializing a 1 1, b 0 0,
  • Time-warp and space-warp stages are alternated
    (Coordinate descent)
  • Optimize E with a, b fixed
  • Optimize E with W fixed
  • Convergence ?
  • E only contains quadratic terms lower bounded
  • Each iteration performs a global opt. E cannot
    increase

11
Correspondence Time Warp
  • Approximate String Matching Problem
  • Given two string p p1 pm, q q1 qn (n
    gt m)
  • Fj(p) j-th character of the edited p ? only
    repetition
  • Ex) a ? ar (1r k, k repetition limit)
  • c cost function (0 if arguments are same, 1
    otherwise)
  • Dynamic programming
  • Ex) p a b c d e, q a a b c d e ? F(p)
    a a b c d e

12
Correspondence Time Warp
  • Convert to Finding Correspondence Problem
  • Given two motion p p1 pm, q q1 qn (n
    gt m)
  • Cost function c ? squared difference
  • Edit function F ? integer repetition vector r
  • 1a column vector of a ones
  • R repetition matrix
  • Constraints
  • ri ?1, , k, ?iri n

13
Correspondence Time Warp
  • More general situation
  • Algorithm lengthens p to compute the
    correspondence with q
  • What if p is longer than q?
  • First, lengthening q by s repetitions of each
    element

14
Correspondence Time Warp
  • Optimize E with a, b fixed
  • Lengthening y
  • p Uab, q y
  • After minimization, W repetition matrix R
  • ?

IMW objective function
Time warp objective function
15
Correspondence Space Warp
  • Optimize E with W fixed
  • Zeroing the first derivative of E w.r.t. a and b
  • Can use Gaussian elimination to solve efficiently

(dE/da 0, dE/db 0)
?
16
Correspondence Full Dimension
  • So far, motions in single dimension
  • Undesired
  • the legs must be synchronized in the same time
    frame
  • Solution
  • Time warp replace by the squared norm of the
    frame difference
  • Space warp unmodified and use independently for
    each DOF

17
Correspondence Usage
  • a, b
  • Auxiliary terms
  • W (Warp matrix)
  • Repetition vector w
  • w w1 w2 wn (wi repetition number of
    input motion frame i)
  • diag(WTW)
  • But, w encodes correspondence of u to the
    s-lengthened
  • version of y
  • w is divided by the s

18
Style Translation
  • LTI(Linear Time-Invariant) model
  • approximate the relationship - input and output
    style
  • its parameters are estimated from the training
    data using existing algorithm and implementation
  • Given a input frames ut in input style,
  • Translation system computes a sequence of frames
    yt in output style

19
Style Translation Representation
  • Time
  • encode the time warp so that it can be reversed
    during synthesis.
  • Attach elements of w to their corresponding
    frames.
  • w correspond to a monotonically increasing
    timeline
  • No guarantee that the estimated LTI model produce
    positive w-values
  • Store the logarithm
  • Inversion exponential produces positive values.

20
Style Translation Representation
  • Root joint
  • Encode the root position and orientation relative
    to the previous frames root position and
    orientation.
  • Joint orientations
  • Exponential map Grassia 1998
  • Normalize all DOFs to have 0-mean and
    unit-variance across all frames

21
Style Translation Translation Model
  • Each joint is translated independently

Root
TM
Root
Hip
TM
Hip
Knee
TM
Knee
Elbow
TM
Elbow



Root
TM
Timing
22
Style Translation Translation Model
  • Why linear time-invariant (LTI) model ?
  • Relationship between two motions (ut input, yt
    output)
  • How about linear Regression ?
  • yt Dut

LTI model Translation Model
ut
yt
23
Style Translation Estimation
  • Uses example motions to infer the model
    parameters
  • Classic system identification task with many
    standard and robust algorithms Ljung 1999
  • Used N4SID algorithm Van Overschee and De Moor
    1996
  • MATLAB system identification toolbox
  • 1) Estimate the optimal state sequence
  • 2) System matrices are estimated

24
Style Translation Usage
  • Set the initial condition x0 0 0
  • As each input frame arrives, converted to the
    proper representation
  • Above is inserted into the LTI model
  • Produces output
  • The steps of representational transformation are
    inverted

25
Style Translation Postprocessing
  • May violate kinematic constraints imposed by the
    environment
  • Footstake can be corrected by Kovar et al. 2002
  • Heuristic Generalization
  • Motion outside the training examples
  • Artifacts
  • Detect and blend
  • original input motion and output of the LTI model

26
Results
  • All motions
  • 120 fps, 35 DOFs
  • Walking examples
  • Normal, Supermodel, Sneaky, Limping, Shuffling
  • Translation Normal walk into others
  • Fighting
  • Weak, Aggressive
  • Translation Weak style into Aggressive style

27
Conclusion
  • IMW algorithm
  • LTI model
  • Not physically correct
  • Biomechanics insights about human motion
Write a Comment
User Comments (0)
About PowerShow.com