Multimedia Security System Final Project Presentation - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

Multimedia Security System Final Project Presentation

Description:

the intensity gradient of perimeter pixel : number of perimeter pixels : ... The normalized distance on boundary pixels. Divide to multi-channels. Head Tracking ... – PowerPoint PPT presentation

Number of Views:34
Avg rating:3.0/5.0
Slides: 24
Provided by: wesle87
Category:

less

Transcript and Presenter's Notes

Title: Multimedia Security System Final Project Presentation


1
Multimedia Security SystemFinal Project
Presentation
  • A Robust Elliptical Head Tracker
  • Chih-Kai Yang
  • Chun-Wei Hsu

2
Various Methods about Face Detection
  • Face template
  • Skin color and histogram
  • Edge and boundary
  • Depth
  • Texture

3
Model We Choose Ellipse model
  • Use a vertical ellipse with a fixed aspect ratio
    of 1.2 to match the shape of head

4
Four Modules used to Detect and Track
  • Detected with Gradients
  • Detected with Distance Transform image
  • Color histogram
  • Texture histogram

5
Gradient module
6
Gradient module (contd)
  • S describes the location and size of ellipse
  • (x, y) is the center of ellipse
  • sis the length of long axis

7
Gradients The measure of match
  • The normalized magnitude on boundary
  • Take direction into concern

the intensity gradient of perimeter pixel
number of perimeter pixels
the unit vector normal to ellipse
8
Distance Transform module
9
Directions of edges
  • Divide edges into multi-channels

10
Color Histogram
  • Step 1
  • R,G,B B-G , G-R ,
    BGR
  • Step 2
  • B-G 512(255-255) 8 bins
  • G-R 512(255-255) 8 bins
  • BGR 3x256 4 bins
  • 8x8x4256 histogram

11
Color Histogram
  • Step 3. Model histogram to be reference in
    first frame
  • M(i) counts in the i th bin

12

Color Histogram
  • Step 4. collect Target histogram after 2nd frame.
  • I(i) counts in the i th bin

13
Color Histogram
  • Step 5. Scan in Search Window .

?
14
Color Historam
  • Step 6. Calculate Score of each scan
  • Step 7Combine with Gradient Method

15
Texture Histogram
  • Why do we use Texture Method?

16
Texture Histogram
  • Step 1

4 scales 8 orientations Log-Gabor filter
32 dimension Texture data
4 scales 8 oreitation
Image
Ellipse Capture
17
Texture Histogram
  • Step 2 transfer texture data to histogram

18
Texture Histogram
  • Step 3.

?
19
The measure of match
  • The normalized distance on boundary pixels
  • Divide to multi-channels

20
Head Tracking
  • Constant velocity model

21
Combine 2 modules to do tracking
  • Convert scores to a percentage
  • Find S whose score is maximun

22
DEMO
  • Rotation , Zoom in/out , Sway.
  • Simple occlusion
  • Various conditions in monotonic background.
  • Occlusion in complex background.
  • Sway and Occlusion in complex background

23
Reference
  • 1 Stan Birchfield. An elliptical head tracker.
    In Proceedings of the 31st Asilomar Conference on
    Signals, Systems and Computers, volume 2, pages
    17101714, 1997.
  • 2 Stan Birchfield. Elliptical head tracking
    using intensity gradients and color histograms.In
    Proceedings of the IEEE Conference on Computer
    Vision and Pattern Recognition, pages 232237,
    1998.
  • 3 Stanley T. Birchfield and Sriram Rangarajan.
    Spatiograms versus histograms for region-based
    tracking. In Proceedings of the IEEE Conference
    on Computer Vision and Pattern Recognition, pages
    11581163, 2005.
  • 4 L. Brown. 3D head tracking using motion
    adaptive texture-mapping. In Proceedings of the
    IEEE Conference on Computer Vision and Pattern
    Recognition, pages 9981005, 2001.
  • 5 Rafael C. Gonzalez and Richard E. Woods.
    Digital Image Processing. Prentice Hall,2002.
Write a Comment
User Comments (0)
About PowerShow.com