Engineering Statistics Part 1 - PowerPoint PPT Presentation

1 / 11
About This Presentation
Title:

Engineering Statistics Part 1

Description:

Occur frequently in engineering applications. Molecular weight of polymer product ... (x,mu,sigma) normal distribution at x for mean mu and standard deviation sigma ... – PowerPoint PPT presentation

Number of Views:24
Avg rating:3.0/5.0
Slides: 12
Provided by: jaredhj
Category:

less

Transcript and Presenter's Notes

Title: Engineering Statistics Part 1


1
Engineering Statistics Part 1
  • Random sampling
  • Point estimation of parameters
  • Confidence intervals

2
Random Sampling
  • Random variable X
  • Occur frequently in engineering applications
  • Molecular weight of polymer product
  • Film thickness of solar cell
  • Random sampling
  • Obtain samples from a population
  • All outcomes must be equally likely to be sampled
  • Replacement necessary for small populations
  • Meaningful statistics can be obtained from
    samples
  • Sample mean variance

3
Point Estimation of Parameters
  • Point estimate
  • Value computed from samples that approximates
    unknown parameter value of the population from
    which the samples are randomly selected
  • Gaussian distribution
  • Binomial distribution

4
Maximum Likelihood Estimation
  • Single parameter
  • Consider a discrete random variable X with
    probability density function depending on a
    single parameter f(x,q)
  • Collect n random samples x1, x2,, xn
  • Likelihood function probability that sample of
    size n consists of precisely these values
  • Select q to maximize likelihood
  • Multiple parameters f(x,q1,q2,,qr)

5
Gaussian Distribution
  • Likelihood function
  • Logarithm
  • Estimates

6
Confidence Intervals
  • Definition
  • An interval in which the unknown parameter is
    contained with a certain probability g
  • g confidence level
  • q1, q2 confidence limits depending on g
  • t-distribution (confidence interval on mean)
  • m degrees of freedom
  • Values tabularized (Table A9 in Appendix 5)
  • Chi-square distribution (confidence interval on
    variance)
  • Values tabularized (Table A10 in Appendix 5)

7
Determination of Confidence Intervals
  • Consider a Gaussian distribution with unknown m
    s2
  • Confidence interval on the mean
  • Choose confidence level g
  • Determine value c using the t-distribution with m
    n-1
  • Compute the mean variance of the sample x1,
    x2,, xn
  • Confidence interval
  • Confidence interval on the variance
  • Choose confidence level g
  • Determine solutions c1 c2 using the chi-squared
    distribution with m n-1
  • Compute the variance of the sample x1, x2,, xn
  • Confidence interval

8
Confidence Intervals Example
  • Measurements of polymer molecular weight (scaled
    by 10-5)
  • Confidence interval on mean
  • Confidence interval on variance

9
Matlab Confidence Intervals
  • gtgt muhat,sigmahat,muci,sigmaci
    normfit(data,alpha)
  • data vector or matrix of data
  • alpha confidence level 100(1-alpha)
  • muhat estimated mean
  • sigmahat estimated standard deviation
  • muci confidence interval on the mean
  • sigmaci confidence interval on the standard
    deviation
  • gtgt muhat,sigmahat,muci,sigmaci normfit(1.25
    1.36 1.22 1.19 1.33 1.12 1.27 1.27 1.31
    1.26,0.05)
  • muhat 1.2580
  • sigmahat 0.0697
  • muci 1.2081
  • 1.3079
  • sigmaci 0.0480
  • 0.1273

10
Central Limit Theorem
  • Let X1,,Xn be independent random variables,
    each with same mean m variance s2
  • Sum of independent variables
  • Yn X1Xn has the mean nm and variance ns2
  • If X1,,Xn are also normal variables, then Yn
    is a normal random variable
  • Central limit theorem
  • Consider following random variable Zn
  • Zn is asymptotically normal with zero mean
    unity variance in the sense that its distribution
    function Fn(x) satisfies
  • Can determine confidence intervals for non-normal
    distributions using previous methods if
    sufficiently large sample sizes are used

11
Matlab Test the Central Limit Theorem
  • y tpdf(c,m) ? t-distribution at c for m degrees
    of freedom
  • y normpdf(x,mu,sigma) ? normal distribution at
    x for mean mu and standard deviation sigma
  • tpdf(-2.52.5,5)-normpdf(-2.52.5,0,1) ? ans
    0.0158 -0.0050 -0.0241 -0.0241 -0.0050
    0.0158
  • tpdf(-2.52.5,25)-normpdf(-2.52.5,0,1) ? ans
    0.0042 -0.0007 -0.0050 -0.0050 -0.0007
    0.0042
  • tpdf(-2.52.5,100)-normpdf(-2.52.5,0,1) ? ans
    0.0011 -0.0001 -0.0013 -0.0013 -0.0001
    0.0011
Write a Comment
User Comments (0)
About PowerShow.com