Quantum Electronics Division - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Quantum Electronics Division

Description:

Quantum Electronics Division – PowerPoint PPT presentation

Number of Views:276
Avg rating:3.0/5.0
Slides: 15
Provided by: nch62
Category:

less

Transcript and Presenter's Notes

Title: Quantum Electronics Division


1
Quantum Electronics Division
  • Joseph W. Haus
  • Quantum Electronics Division Chair
  • University of Dayton
  • Colin J. McKinstrie Chair-elect
  • Lucent Technologies

2
QE Topical Areas
  • Laser Science and Engineering
  • Jason Eichenholz, Newport Corp., Chair
  • Johan Nilsson, University of Southampton,
    Vice-Chair
  • Nonlinear Optics
  • David Hagan CREOL, Chair
  • Gennady Shvets Univ. of Texas at Austin,
    Vice-Chair
  • Quantum Optics
  • Michael Vasilyev, Univ. of Texas at Arlington,
    Chair
  • Andrew White,  University of Queensland,
    Vice-Chair
  • Ultrafast Optical Phenomena
  • David H. Reitze, Univ. of Florida, USA, Chair
  • Andrea Cavalleri, Oxford University, UK,
    Vice-Chair

3
OSA 2007 Annual meeting themes
  • Fiber lasers - Ultrafast themes
  • (Nano) Engineered NLO materials
  • Accelerator-based fs physics (wakefield
    generation and x-rays)
  • Ultrafast dynamics in biological and chemical
    systems (temporary (?) swap with Optical Science
    Div)
  • Metamaterials and plasmonics (temporary (?) swap
    with OSD)
  • Quantum Information
  • Additional themes
  • Silicon photonics (joint with Photonics Div)
  • Atom optics (DLS coordination)
  • Angular momentum/vortices
  • Customized micro-structured fibers (Photonics Div
    Coordination)
  • Silicon photonics (joint with Photonics Div)
  • Atom optics (DLS coordination)
  • Quantum sensing and imaging
  • Ultrafast pulse measurement (OSD)

4
(Nano) Engineered NLO materials
  • Photonic crystals
  • Enhanced nonlinearity
  • Phase matching
  • Slow light interaction
  • Spatial dispersion control
  • Output coupling
  • Ceramic lasers
  • High transparency
  • High slope efficiency
  • gt100 W output
  • New materials OPGaAs, BiB3O6, 2D and
    higher-order QPM schemes.

Y. Qi, et al OE 13, (2005).
5
NLO phenomena
  • Continuum generation broadband with ns pulses
  • (G. Genty et al. Opt. Expr. 13, (2005).
  • Super-high resolution single molecule detection
    twophoton fluorescence
  • M.C. Lang OL 32, (2007)
  • Random laser coherence and polarization
    emission control.

H. Cao, OPN (2005)
6
Fiber lasers and NLO
  • Laser applications are exploding medicine,
    welding, machining, metrology, semiconductor
    inspection, etc
  • High power fiber lasers - gt1 KW output.
  • Double-clad fibers (PC fibers too) for
    single-mode operation.

Yb-doped PC fiber for microJ fs pulses T.
Schrieber et al Opt Lett 31, (2006).
CARS spectrum from a hollow PC fiber I. Fedotov
et al Opt. Lett 31, (2006).
7
Carrier-Envelope Phase Control

Time domain picture
Frequency domain picture
TR
fCE - locking by 1f-2f interferometery (Hänsch,
Hall, Telle, )
Coherent transfer of timing from optical to
rf-domain enables Optical Clocks High
Resolution Spectroscopy Low-Noise Microwave
Oscillators
Sub-cycle control of physical process Attosecond
Science Control of Strong Field Processes
Sensitive to the Carrier Envelope
PhaseControlled soft x-ray generation
F. Kaertner, MIT
8
What is Hot in Quantum Optics?From M. Vasilyev
  • Generating Optical Schrodinger Kittens for
  • Quantum Information Processing
  • Ourjoumtsev et al, Science 312, 83 (2006)
  • Generation of a Superposition of Odd Photon
    Number
  • States for Quantum Information Networks
  • Neergaard-Nielsen et al, PRL 97, 083604
    (2006)
  • Room-temperature coherent coupling of single
    spins in diamond
  • Gaebel et al, Nature Physics 2, 408 (2006)
  • Mode Locking of Electron Spin Coherences in
    Singly Charged Quantum Dots
  • Greilich et al, Science 313, 341 (2006)
  • Quantum-Dot Spin-State Preparation with
    Near-Unity Fidelity
  • Atature et al, Science 312, 551 (2006)
  • A High-Brightness Source of Narrowband,
    Identical-Photon Pairs

9
Subtracting a Photon from Squeezed
VacuumGeneration of Schrodinger Kitten States
  • Generating Optical Schrodinger Kittens for
    Quantum Information Processing
  • A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat,
    and P. Grangier, Science 312, 83 (2006)
  • Generation of a Superposition of Odd Photon
    Number States for Quantum Information Networks
  • J. S. Neergaard-Nielsen, B. Melholt Nielsen,
    C. Hettich, K. Mølmer, and E. S. Polzik, PRL 97,
    083604 (2006)

Negative Wigner Function
Quadrature distributions
Theory
Gain1.8 Gain2.3 Theory
Quadrature distribution
10
A High-Brightness Source of Narrowband,
Identical-Photon PairsJ. K. Thompson, J. Simon,
H. Loh, V. Vuletic, Science 313, 74 (2006)
104 atoms
Quantum cross-correlation
Classical cross-correlation
Auto-correlation
Auto-correlation of read-photon conditioned on
detection of write-photon (heralded single-photon
source)
Cross-correlation
45 cross-correlation
Two-photon interference
11
Ion trap in a semiconductor chipD. Stick, W. K.
Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab
C. Monroe, Nature Physics 2, 36 (2006)
Single trapped ion
12
Hot Topics on the horizon
  • DNA photonics BioLED, DNA electron blocker.
  • Si photonics.
  • Laser sources progress toward far IR and THz
    sources. Solid state, Quantum cascade, new
    semiconductor materials (eg. GaSe, ZnGeP2) etc.
  • Spatial-temporal distortions in ultrashort pulse
    pulses.

13
DNA photonics
DNA/CTMA
DNA cladding and functionalized core - waveguides
for EO modulators ORMOCER increases mechanical
strength allows photopatterning
Low loss waveguides (lt1 dB/cm)
14
DNA Applications
  • BioFET DNA-CTMA Gate Dielectric
  • Bio Organic LED
Write a Comment
User Comments (0)
About PowerShow.com