Forschung am XRay FEL - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

Forschung am XRay FEL

Description:

Scientific applications using x ray FELs. Atoms, ions, molecules, and clusters ... 24 m x 24 m pixel CCD. Miao, Charalambous, Kirz, Sayre, Nature, 400, July 1999 ... – PowerPoint PPT presentation

Number of Views:30
Avg rating:3.0/5.0
Slides: 24
Provided by: tsch77
Category:
Tags: fel | forschung | xray

less

Transcript and Presenter's Notes

Title: Forschung am XRay FEL


1
Forschung am X-Ray FEL
Gerhard Grübel Hasylab/DESY, Notke-Strasse 85,
22607 Hamburg
2
Inhalt
  • Einleitung
  • Das Licht des XFEL
  • II. Dynamik von/in Bio-Molekülen
  • Pump-Probe Experimente
  • Anwendungen
  • III. Streuung mit kohärentem Röntgenlicht
  • Speckle und Dynamik
  • Strukturbestimmung am Einzelmolekül
  • Magnetisierungsdynamik
  • IV. Ausblick

3
Properties of FEL radiation
  • X-ray FEL radiation (0.2 - 14.4 keV)
  • ultrashort pulse duration 100 fs
  • extreme pulse intensities 1012-1014 ph
  • coherent radiation x109
  • average brilliance x104
  • Spontaneous radiation (20-200 keV)
  • ultrashort pulse duration lt200 fs
  • high brilliance

x109
4
Scientific applications using xray FELs
  • Atoms, ions, molecules, and clusters
  • Multiple ionization and multiphoton events
  • Creation and spectroscopy of excited states
  • (hollow atoms, Rydberg states, Laser states,
    ....)
  • Dynamics, electronic geom. cluster properties

Plasma physics
  • Generation of solid-density plasmas
  • Plasma diagnostics

Condensed-matter physics
  • Ultrafast dynamics
  • Electronic structure
  • Disordered materials soft matter

Materials sciences
  • Dynamics of hard materials
  • Structure and dynamics of nanomaterials

Chemistry
  • Reaction dynamics in solid, liquid systems
  • Analytical solid-state chemistry
  • Heterogenous catalysis

Structural biology
  • Single molecule/particle imaging
  • Dynamics of biomolecules

Optics and nonlinear phenomena
  • Nonlinear effects in atoms and solids
  • High field science

Ultrashort pulses
Pulse intensities
Center of XFEL science
Coherence
Average brilliance
5
Inhalt
  • Einleitung
  • Das Licht des XFEL
  • II. Dynamik von/in Bio-Molekülen
  • Pump-Probe Experimente
  • Anwendungen
  • III. Streuung mit kohärentem Röntgenlicht
  • Speckle und Dynamik
  • Strukturbestimmung am Einzelmolekül
  • Magnetisierungsdynamik
  • IV. Ausblick

6
Dynamics of Biomolecules
  • Example Myoglobin
  • protein found in muscle, stores oxygen for
    conversion into energy.
  • Structure solved in 1960 (Kendrew).
  • Puzzle How does the oxygen get into and out
    of the myoglobin molecule.
  • The protein is not static but dynamic with
    channels opening and closing?
  • ? Time resolved Laue Diffraction
  • Use CO instead of O2. Use 10 ns optical pulse
    to photodissociate CO from the Fe docking
    site. Probe dynamics with a 100 ps x-ray pulse.

Courtesy M. Wulff
7
Dynamics of Biomolecules
Courtesy M. Wulff
8
Dynamics of Biomolecules
Courtesy M. Wulff
9
Dynamics of Biomolecules
Courtesy M. Wulff
10
Dynamics of Biomolecules
  • Today study (structure) and dynamics on a
  • ns to ps timescale
  • Tomorrow study (structure) and dynamics on a
  • sub-ps timescale

11
Inhalt
  • Einleitung
  • Das Licht des XFEL
  • II. Dynamik von/in Bio-Molekülen
  • Pump-Probe Experimente
  • Anwendungen
  • III. Streuung mit kohärentem Röntgenlicht
  • Speckle und Dynamik
  • Strukturbestimmung am Einzelmolekül
  • Magnetisierungsdynamik
  • IV. Ausblick

12
Scattering with Coherent X-Rays
If coherent light is scattered from a disordered
system it gives rise to a random (grainy)
diffraction pattern, known as speckle. A
speckle pattern is an inter- ference pattern and
related to the exact spatial arrangement of the
scatterers in the disordered system. I(Q,t) ?
Sc(Q,t) ? ? fj (Q) e iQRj(t) 2
j in coherence volume c?t2?l Incoherent Light
S(Q,t) lt Sc(Q,t)gtVgtgtc ensemble
average
Aerogel ?1Å CCD (22 ??m)
Abernathy, Grübel, et al. J. Synchroton Rad. 5,
37, 1998
13
Speckle Reconstruction
Reconstruction (phasing) of a speckle pattern
oversampling technique
gold dots on SiN membrane ?17Å coherent
beam at X1A reconstruction (0.1 ?m
diameter, 80 nm thick) (NSLS), 1.3.109 ph/s 10?m
pinhole oversampling technique
24 ?m x 24 ?m pixel CCD Miao,
Charalambous, Kirz, Sayre, Nature, 400, July
1999 other examples nanocrystalline materials
(Williams et al., PRL90,175501,2003 He et
al.,PRB67,174114,2003)
14
Perspectives with a coherent XFEL Source
  • Synchrotron Sources XFEL
  • Fc/bunch ?100 ?1012
  • bunches(time) 108-1010 (1-100s) 1 (100 fs)
    to record a
    speckle
    pattern (1010-1012ph)
  • Structure determination of single macromolecules?
  • About 20-40 of all protein molecules, including
    the important membrane proteins are difficult or
    impossible to crystallize.
  • Need about 1018 ph for reconstruction of 3D
    pattern from single molecule. A single molecule
    is predicted to withstand about 1012 ph/10 fs.
  • Need ? 106 single molecules
  • Fast Dynamics in the Time Domain ?

15
Single Molecule Diffraction
An approach to three-dimensional structures of
biomolecules by using single-molecule diffraction
images A simulation
Reconstructed 3-D pattern (from 250 2-D
projections). Phasing by oversampling
technique.
3-D structure (2.5 Å resolution) of rubisco
molecule. (106 kDa)
Top view of a section (kz0) of 3-D scattering
pattern from 106 single molecules (of known
relative orientation) each exposed by a single
10 fs XFEL pulse (?1.5Å, 0.1?m beamsize)
containing 2.1012 photons.
J. Miao, K.O. Hodgson and D. Sayre, PNAS, 98,
6641 (2001)
16
Beam Sample Interaction
17
Scattering with Coherent X-Rays
If coherent light is scattered from a disordered
system it gives rise to a random (grainy)
diffraction pattern, known as speckle. A
speckle pattern is an inter- ference pattern and
related to the exact spatial arrangement of the
scatterers in the disordered system. I(Q,t) ?
Sc(Q,t) ? ? fj (Q) e iQRj(t) 2
j in coherence volume c?t2?l Incoherent Light
S(Q,t) lt Sc(Q,t)gtVgtgtc ensemble
average
Aerogel ?1Å CCD (22 ??m)
Abernathy, Grübel, et al. J. Synchroton Rad. 5,
37, 1998
18
Photon correlation spectroscopy (PCS)
  • Gaussian fluctuations (g21g12), no optical
    mixing/heterodyning
  • g(Q,t)ltI(Q,0)?I(Q,t)gt/ltI(Q)gt2 1 ?(Q)
    f(Q,t)2
  • ?(Q) contrast
  • f(Q,t) F(Q,t) / F(Q,0) normalized
    intermediate scattering function
  • F(Q,t)(1/(Nf2(Q)) ?n?mlt fn(Q) fm(Q) exp (iQ
    rn(0)- rm(t)gt
  • F(Q,0) S(Q) static structure factor
  • Diffusive Processes f(Q,t) exp (-? t)
  • ?min 1 / ? ? 100 ns (overlap to
    Neutron Spin Echo NSE technique)

19
X-Ray Photon correlation spectroscopy (XPCS)
  • Brownian motion (Silica, 2610 Å in glycerol)

time btw. frames today ? 1 s time btw. frames
XFEL ? 100 ns given by time btw. (10000)
bunches in a 1 ms long macro-bunch NOTE
the accessible time window in this example is
limited by time structure of the machine gt
delay lines cw operation
100 ns
1 ms
100 ms
V. Trappe and A. Robert
20
Scattering with Coherent X-Rays
If coherent light is scattered from a disordered
system it gives rise to a random (grainy)
diffraction pattern, known as speckle. A
speckle pattern is an inter- ference pattern and
related to the exact spatial arrangement of the
scatterers in the disordered system. I(Q,t) ?
Sc(Q,t) ? ? fj (Q) e iQRj(t) 2
j in coherence volume c?t2?l Incoherent Light
S(Q,t) lt Sc(Q,t)gtVgtgtc ensemble
average fj (Q) fj (Q) fjm (Q) fj
(Q) charge-density fjm(Q) magnetization
density
21
Magnetization Dynamics
?300 fs (Ni)
?1 ps (Ni)
electrons
phonons
after H. Dürr
22
Magnetic X-Ray Speckle
Meandering stripe-domains in a 350 Å thick film
of GdFe2
Magnetic speckle pattern taken with a 15 µm beam
of circularly polarized X-rays tuned to the Gd M5
resonance at 1183.6 eV. Reconstruct ? structure
M-XPCS ? dynamics
J.F. Peters, M.A.deFries, J. Miguel, O.
Toulemonde, J. Goedkoop, ESRF Newsletter
34(2000)15
23
Ausblick - Weitere Beispiele
Write a Comment
User Comments (0)
About PowerShow.com