Wetting When It Isn - PowerPoint PPT Presentation

About This Presentation
Title:

Wetting When It Isn

Description:

(x ~ xc = 0.36) at T = Trsv. wetting film on Si(100) T = Trsv DTm. ... 'Force' or 'pressure' balance: y = (L/x )1/n = t (L/x0 )1/n. y = (L/x )1/n = t (L/x0 )1/n ... – PowerPoint PPT presentation

Number of Views:22
Avg rating:3.0/5.0
Slides: 28
Provided by: peterp54
Category:
Tags: isn | wetting

less

Transcript and Presenter's Notes

Title: Wetting When It Isn


1
Wetting When It Isnt Simple!P.S. Pershan,
Harvard Univ.
Simple Wetting
2
Three Different Experiments
  • 1) Casimir Effect Critical Binary Liquid
  • Fisher and de Gennes (1978), Krech and Dietrich
    (1991, 1992)
  • Correlation Length

M. Fukuto,Y. Yana
3
2) Structured SurfaceC. Rascon and A. O. Parry,
Nature 407, 986 (2000).
O. Gang, B.Ocko,, K.Alvine, T. Russell,M. Fukuto,
C. Black
4
3) Reconstructing Surface
D. Pontoni, K. Alvine, A. Checco, O. Gang, B.
Ockio, F. Stellacci
Nanoparticles Controlled Solvation
Thiol Stabilized Au Particles( 2 to 8 nm)
5
Control of Film Thickness
Vapor Pressure? Thickness
Delicate Control
????P??? ?T?
Van der Waals
6
X-Ray Reflectivity Film Thickness
7
Example of 1/3 Power Law
Methyl cyclohexane (MC) on Si at 46 C
8
Critical Casimir Effect in NanoThick Liquids
Binary Liquid
Fisher and de Gennes (1978), Krech and Dietrich
(1991, 1992)
Methylcyclohexane (MC)
Perfluoro- methylcyclohexane (PFMC)
Heady Cahn, J. Chem. Phys. 58, 896 (1973) Tc
46.13 ? 0.01 C, xc 0.361 ? 0.002
9
Thermodynamics
Same Experiment Thickness of Absorbed Film
Critical Point
10
X-ray reflectivity Film thickness D
Paths
11
Theory
12
Experiment vs. Theory
There is prediction for ????????for 3D.
Theory for y-dependence in d3 does not exist!
13
Universal Casimir amplitudes
At bulk Tc (t 0), scaling functions reduce to
D ? q(0) Q(0)/(d 1)
For d 3 Ising systems D, D,-
Renormalization Group (RG) Monte Carlo M. Krech, PRE 1997 -0.326 -0.345 2.39 2.450
Local free energy functional theory (LFEF) Z. Borjan P. J. Upton, PRL 1998 -0.42 3.1
Our Result N/A 3 1
For recent experiments with superfluid He (XY
systems), see R. Garcia M.H.W. Chan, PRL
1999, 2002 T. Ueno et al., PRL 2003
14
Sculpted Surfaces
Theory Rascon Parry, Nature (2000)
Crossover Geometry to Planar
Planar
Geometry Dominated
15
Parabolic Pits Tom Russell (UMA)
Diblock Copolymer in Solvent
40 nm Spacing 20 nm Depth/Diameter
16
X-ray Grazing Incidence Diffraction (GID)
In-plane surface structure
Liquid Fills Pore Scattering Decreases
17
X-ray Measurement of Filling
18
Results for Sculpted Surface
Sculpted is Thinner than Flat
Flat Sample
?c?????
19
Tasinkevych Dietrich
20
Reconstructing SurfaceGold Nanoparticles
Controlled Solvation
Stellacci et al (MIT) OT MPA (21)OTCH3(CH2)7S
HMPAHOOC(CH2)2SH
Liftoff Area Of Monolayer
Bimodal Size Distribution of Particles
21
GID X-ray vs. Liquid Adsorption(small particles)
Return to Dry
22
Temperature Dependence of Reflectivity
23
Construction of Model Dry Sample
Model Fit Based on Particle Size Distribution
Vertical electron density profile
Core size distribution
24
Fits of Physical Model
25
Evolution of Model with Adsorption
26
Summary of Nano-particle experiments
Bimodal Au nanocrystals in equilibrium with
undersaturated vapor
Poor vs..... Good Solvent
Good Solvent
Aggregation in Poor Solvent
Reversible
Dissolution in Good Solvent
Self Assembly
27
Summary
  • Delicate Control of Wetting ?????
  • Wetting of Critical Liquid (Casimir)
  • M. Fukuto,Y. Yana
  • Wetting of Structured Surface (Rascon/Parry
    Tasikevych/Dietrich)O. Gang, B.Ocko,, K.Alvine,
    T. Russell,M. Fukuto, C. Black
  • Nano-Particles Self Assembly D. Pontoni, K.
    Alvine, A. Checco, O. Gang, B. Ockio, F. Stellacci
Write a Comment
User Comments (0)
About PowerShow.com