Title: Xray diffraction
1Crystals
Electron Density Map
Data analysis and phase determination
Model building and refinement
X-ray diffraction data collection
Structural Model
Diffraction Image
2How do we get expression for desired unknown in
terms of measurable F?
?(x y z)e 2? i (hx ky lz) dxdydz
F(h k l)
Summation of a periodic function. Physically,
summation of scattered waves satisfying Braggs
law
3Fourier Series and Transforms
?(x y z)e 2? i (hx ky lz) dxdydz
F(h k l)
Fourier Theorem any function can be written as
f(x)e 2? i(hx) dx
F(h)
F(h) is the fourier transform of f(x)
h and x have inverse units
4Fourier Series and Transforms
f(x)e 2? i(hx) dx
F(h)
?
?
F(h)e-2? i(hx) dh
Back transform
f(x)
-?
5Fourier Series and Transforms
?
?
?
F(h k l)
V ?(x y z)e2? i (hx ky lz) dxdydz
x
y
z
?
?
?
1/V F(h k l) e-2? i (hx ky lz) dhdkdl
?(x y z)
h
k
l
?
?
?
1/V F(h k l) e-2? i (hx ky lz)
?(x y z)
k
h
l
If we measure F(h k l) we can calculate ?(x y z)
6Do we measure F(h k l)?
F(h k l) is a wave it has amplitude, frequency,
phase.
I (h k l) F(h k l)2
We effectively measure F(h k l) not F(h k l)
7Phase problem
?
?
?
1/V F(h k l) e-2?i(hx ky lz)
?(x y z)
k
h
l
?
?
?
1/VF(h k l) e-2?i(hx ky lz)i?(hkl)
?(x y z)
h
k
l
8Fourier Series and Transforms
?
?
?
F(h k l)
V ?(x y z)e2?i(hx ky lz) dxdydz
x
y
z
?
?
?
1/V F(h k l) e-2?i(hx ky lz)
?(x y z)
h
k
l
Note If we know ?(x y z) we can calculate F(h k
l)
9Diffraction Image
Electron Density Map
I(h k l)
a(h k l)
1) Isomorphous Replacement 2) Anomalous
Scattering 3) Molecular Replacement
10Isomorphous Replacement
FP
FPH
Native Data
Derivative Data
What does isomorphous mean?
11Fhlk
FPH FP FH
FP
FH
FPH
12Quantities we want
FP FPH - FH
FP
Quantities we know
FP
Intensities of native diffraction
FPH
Intensities of derivative diffraction
FH
Structure factors w/phases of heavy atoms
?
?
?
1/V F(h k l) e-2?i(hx ky lz)
?(x y z)
k
h
l
?
?
?
F(h k l)
V ?(x y z)e2?i(hx ky lz) dxdydz
x
y
z
13FP FPH-FH
FPa
-FH
FPH
FP
FPb
How do we choose between FPa and FPb?
14Make a second derivative!
FP FPH-FH
FPa
FPH
-FH
FPb
?
?
?
1/V FP(h k l) e-2?i(hx ky lz)
?(x y z)
h
k
l
15?
?
?
FH(h k l)
V ?H(x y z)e2?i(hx ky lz) dxdydz
x
y
z
?H(x y z) requires knowing the position of heavy
atoms Determine using Patterson function
16Patterson Function
?(x, y, z)
?
P(u,v,w)
?(x, y, z) ?(xu,yv,zw) dxdydz
vol unit cell
(u v w)
(u v w)
y
v
x
u
17Patterson Function
?
P(u,v,w)
?(x, y, z) ?(xu,yv,zw) dxdydz
vol unit cell
Patterson map will contain points corresponding
to vectors between atoms in the real cell
Real Cell
Patterson Cell
v
y
u
x
18Patterson Function
Real Cell
Patterson Cell
1) Patterson is symmetric about origin
(centrosymmetry)
2) Can see pattern of real cell in patterson cell
repeated N times
3) Contains N(N-1) peaks (not counting origin) ?
gets complicated!
19(No Transcript)
20(No Transcript)
21Patterson Function
?(x, y, z)
?
P(u,v,w)
?(x, y, z) ?(xu,yv,zw) dxdydz
vol unit cell
Key point can calculate P(u,v,w) from
experimental data
?
?
?
F(h k l)2 cos 2?(hu kv lw)
P(u,v,w)
1/V2
k
h
l
but complicated map
22Heavy Atom Patterson Function
?
?
?
P(u,v,w)
F(h k l)2 cos 2?(hu kv lw)
1/V2
k
h
l
Patterson analysis is simplified for heavy atoms
1) Use (FPH(h k l)- FP(h k l))2 as
coefficients ? difference map reflects heavy
atom contribution
2) High Z ? strong peaks
3) Calculate (x,y,z) of heavy atoms directly from
Harker section peaks
23Harker Peaks
Symmetry related atoms give rise to peaks in
Patterson map in specific locations
2 fold
y
(x, y, z)
(u,v,w) (x--x, y--y, z-z)
(u,v,w) (2x,2y, 0)
z
x
(-x, -y, z)
w0
(2x,2y, 0)
v
w0 called Harker plane (section)
u
24Harker Peaks
How many Harker sections are there for P222? What
are they?
Harker Planes u0 v0 w0
Equivalent Positions 1) (x, y, z) 2) (x, -y,
-z) 3) (-x, y, -z) 4) (x, y, z)
Patterson Peaks (1) (2) (0,2y,2z) (1)
(3) (2x,0,2z) (1) (4) (2x,2y,0)
Note If more than one heavy atom, will have
multiple peaks but in same Harker sections
25Data! Harker section at w1/2
What kind of symmetry gives Harker section at
w1/2?
26- Isomorphorous Replacement Step-by-step
1) Collect data for native crystal and
derivitized crystal
FPH(h k l)
FP(h k l)
2) Calculate difference patterson map using
intensity differences as coefficients
?
?
?
P(u,v,w)
(FPH(h k l)- FP(h k l))2 cos 2?(hu kv lw)
1/V2
k
h
l
3) Determine heavy atom positions from Harker
peaks
4) Use heavy atom (x,y,z) to calculate FH from
back fourier transform
?
?
?
FH(h k l)
V ?H(x y z)e2?i(hx ky lz) dxdydz
x
y
z
27- Isomorphorous Replacement Step-by-step
5) Repeat with second derivative to get FH
6) Use FH and FH with FP and FPH to
calculate FP (h k l)
7) Use FP (h k l) to calculate ?(x, y, z) with
forward transform
?
?
?
1/V F(h k l) e2?i(hx ky lz)
?(x y z)
k
h
l
28At absorption edge there is an additional
contribution to the structure factor anomalous
scattering factor
Fano F DFano
29At absorption edge Friedels law no longer holds
Fano(h k l) ? Fano(-h -k -l)
(2 1 0)
b
- Need for anomalous signal
- ? close to absorption edge
- heavy atoms
a
(-2 -1 0)
30At absorption edge Friedels law no longer holds
Fano (h k l) ? Fano (-h -k -l)
-
Fano F DFano
DFano ? DF-ano
DFano
F
Fano
F-
F-ano
DF-ano
31F Fano - DFano
Quantities we know
F
Intensities of diffraction at l far from
absorption edge
Fano
Intensities of diffraction at l near absorption
edge
DFano
Structure factors w/phases of anomalous
contribution
DFano only from heavy atoms Get intensity
DFano from table Phase from known positions of
heavy atoms
32F Fano - DFano
Fa
-DFano
Fano
F
Fb
How do we choose between Fa and Fb?
33F Fano-DFano
F- F-ano-DF-ano
Fa
F-ano
-DF-ano
Fb
34- Other Notes on Anomalous Diffraction
F
DFano
F Fano - DFano
Fano
- Requires data collection at multiple wavelengths
- MAD Multiple anomalous dispersion
2) Only change wavelength ? Data sets are
isomorphous
3) Common to use selenomethionine 4) Synchrotron
required!!