Galactic Super Massive - PowerPoint PPT Presentation

1 / 31
About This Presentation
Title:

Galactic Super Massive

Description:

Gravitational Wave Detection - LISA. Two of the strongest potential sources in the ... Chatterjee P., Hernquist L. & Loeb A., 2003, ApJ, 592, 32 ... – PowerPoint PPT presentation

Number of Views:24
Avg rating:3.0/5.0
Slides: 32
Provided by: astroU7
Category:

less

Transcript and Presenter's Notes

Title: Galactic Super Massive


1
Galactic Super Massive Binary Black Hole Mergers
Dr. Peter Berczik Astronomisches Rechen-Institut
(ARI), Zentrum für Astronomie Univ. Heidelberg,
Germany
berczik_at_ari.uni-heidelberg.de
Second RSDN meeting, 25-27 Nov. 2005, Hoher
List, Germany
2
Collaborators
  • David Merritt, Rochester Institute of Technology,
    NY, USA
  • Rainer Spurzem, ARI, Zentrum für Astronomie Univ.
    Heidelberg
  • Gabor Kupi, ARI, Zentrum für Astronomie Univ.
    Heidelberg
  • Stefan Harfst, Rochester Institute of Technology,
    NY, USA

Grants
  • AST-0206031, AST-0420920 AST-0437519 from the
    NSF
  • NNG04GJ48G from NASA
  • HST-AR-09519.01-A from STScI
  • SFB-439 from the Deutsche Forschungsgemeinschaft

Publications
  • Berczik, Merritt Spurzem, 2005, ApJ, 633, 680,
    astro-ph/0507260
  • Berczik, Merritt Spurzem, in prep

3
Galaxy Collisions
4
BHs in galaxies (MW - Sgr A)
5
Galaxy Collisions BHs collisions
Multiple Massive Black Holes NGC6240 strong
ongoing merger
6
Future Observations
Gravitational Wave Detection - LISA
  • Two of the strongest potential sources in the
  • low-frequency (LISA) regime are
  • Coalescence of binary supermassive black holes
  • Extreme-mass-ratio inspiral into supermassive
    black holes

7
Some of the previous works
  • Milosavljevich M. Merritt D., 2001, ApJ, 563,
    34
  • Hemsendorf M., Sigurdsson S. Spurzem R., 2002,
    ApJ, 581, 1256
  • Chatterjee P., Hernquist L. Loeb A., 2003, ApJ,
    592, 32
  • Makino J. Funato Y., 2004, ApJ, 602, 93
  • Laun F. Merritt D., 2004, astro-ph/0408029
  • Szell A., Merritt D. Seppo M., 2005,
    astro-ph/0502198

Dynamical Modeling Methods
  • Direct N-body method
  • As much as possible accurate
  • Symmetry of the problem is irrelevant
  • (-) Very compute intensive!!!

8
Basic idea of the N-body code
9
Our own GRAPEN-body1 parallel code
4th order Hermite scheme
Hierarchical Block Time Steps
10
GRAPE GRAvity PipE
N
N2
11
GRAPE GRAvity PipE more detail
12
GRAPE6a PCI board
GRAPE6a - PCI Board for PC-Clusters, recent
development of the University of Tokyo
128 Gflops for a price 5K USD Memory for N, up
to 128K particles
13
RIT ARI 32 node GRAPE6a clusters
  • 32 dual-Xeon 3.0 GHz nodes
  • 32 GRAPE6a
  • 14 TB RAID
  • Infiniband switch (10 Gb/s)
  • Speed 4 Tflops
  • N up to 4M
  • Cost 500K USD
  • Funding NSF/NASA/RIT
  • 32 dual-Xeon 3.2 GHz nodes
  • 32 GRAPE6a
  • 32 FPGA
  • 7 TB RAID
  • Dual port Infiniband switch (20 Gb/s)
  • Speed 4 Tflops
  • N up to 4M
  • Cost 350K EUR
  • Funding Vwagen/BW/ARI

14
RIT ARI 32 node GRAPE6a clusters
15
Parallel PP on GRAPE6a cluster
N
Nact
N/Np
16
Parallel PP on GRAPE6a cluster
17
Parallel PP on GRAPE6a cluster
18
Parallel PP on GRAPE6a cluster
19
Parallel PP on GRAPE6a cluster
20
Initial Conditions - I
Z
Two equal-mass black holes near center of
Plummer-model galaxy
Y
X
21
Some Theory
N-body Integration of Binary Black Hole Dynamical
Evolution
star
Example loss-cone around a binary black hole.
Stars scattered into the binary are ejected via
the gravitational slingshot. The binary responds
by shrinking.
?
Full loss-cone
Diffuse regime
binary black hole
In a real galaxy, the shrinking rate (d/dt)(1/a)
would be limited by the rate of diffusion of
stars into the loss cone.
22
Results I (Plummer)
23
Results I (Plummer)
24
Initial Conditions - II
Z
Two equal-mass black holes near center of
King-model (W06) galaxy
Y
X
25
Results II (King)
26
Results I (Plummer) II (King)
27
Double check of the Results
28
Double check of the Results
29
BH collisions?
???
d 10R_BH
If we scaled up our numerical results, for the
typical galaxy bulge (109 Mo 3 kpc 10 Gyr
130) we see that the BHs separation never come
closer 1 0.1 pc For the typical BHs mass
(106 Mo) the gravitational merging regime
start with 10-6 pc!!!
30
Possible way of solution
  • Initial data
  • No equilibrium
  • Higher initial eccentricity
  • New code e0
  • regularization (CHAIN - ?, KS - ?)
  • Larger direct N simulations
  • AC neighbor scheme
  • N-body GAS (SPH)
  • Hardware solution for SPH calculations (FPGA)

31
Conclusions
  • First large direct N 1M parallel GRAPE6a cluster
    simulations
  • The BBH decay rate is N dependent! 400K 1M
    particle is already enough to have a near
    diffuse regime
  • The initial rotation of the host galaxy is very
    important for the BBH orbital evolution. For
    larger rotation we see the clear fixation of
    decay rate
  • Some of the highly rotating models can produce
    the BBH with a very high eccentricity e1.
    Possible source of the low frequency GW (LISA)

Thank you for attention... ?
Write a Comment
User Comments (0)
About PowerShow.com