Title: Improved Moves for Truncated Convex Models
1Improved Moves for Truncated Convex Models
- M. Pawan Kumar
- Philip Torr
2Aim
Efficient, accurate MAP for truncated convex
models
V1
V2
Vn
Random Variables V V1, V2, , Vn
Edges E define neighbourhood
3Aim
Accurate, efficient MAP for truncated convex
models
lk
?abik
??abik wab min d(i-k), M
li
wab is non-negative
d(.) is convex
Vb
?bk
Va
?ai
Truncated Linear
Truncated Quadratic
??abik
??abik
i-k
i-k
4Motivation
Low-level Vision
min i-k, M
Boykov, Veksler Zabih 1998
- Sharp edges between regions
Well-researched !!
5Things We Know
- NP-hard problem - Can only get approximation
- Best possible integrality gap - LP relaxation
Manokaran et al., 2008
- Solve using TRW-S, DD, PP
Slower than graph-cuts
- Use Range Move - Veksler, 2007
None of the guarantees of LP
6Real Motivation
Gaps in Move-Making Literature
Chekuri et al., 2001
2
2 v2
O(vM)
Multiplicative Bounds
7Real Motivation
Gaps in Move-Making Literature
Boykov, Veksler and Zabih, 1999
2
2
2 v2
2M
O(vM)
-
Multiplicative Bounds
8Real Motivation
Gaps in Move-Making Literature
Gupta and Tardos, 2000
2
2
2 v2
4
O(vM)
-
Multiplicative Bounds
9Real Motivation
Gaps in Move-Making Literature
Komodakis and Tziritas, 2005
2
2
2 v2
4
O(vM)
2M
Multiplicative Bounds
10Real Motivation
Gaps in Move-Making Literature
2
2
2 v2
2 v2
O(vM)
O(vM)
Multiplicative Bounds
11Outline
- Move Space
- Graph Construction
- Sketch of the Analysis
- Results
12Move Space
- Choose interval I of L labels
Va
Vb
Iterate over intervals
13Outline
- Move Space
- Graph Construction
- Sketch of the Analysis
- Results
14Two Problems
- Choose interval I of L labels
Large L gt Non-submodular
Non-submodular
Va
Vb
15First Problem
Submodular problem
Va
Vb
Ishikawa, 2003 Veksler, 2007
16First Problem
Non-submodular Problem
Va
Vb
17First Problem
Submodular problem
Va
Vb
Veksler, 2007
18First Problem
am1
bm1
am2
bm2
am2
bm2
an
bn
t
Va
Vb
19First Problem
am1
bm1
am2
bm2
am2
bm2
an
bn
t
Va
Vb
20First Problem
am1
bm1
am2
bm2
am2
bm2
an
bn
t
Va
Vb
21First Problem
am1
bm1
am2
bm2
am2
bm2
an
bn
t
Va
Vb
22First Problem
am1
bm1
am2
bm2
am2
bm2
an
bn
t
Va
Vb
Model unary potentials exactly
23First Problem
am1
bm1
am2
bm2
am2
bm2
an
bn
t
Va
Vb
Similarly for Vb
24First Problem
am1
bm1
am2
bm2
am2
bm2
an
bn
t
Va
Vb
Model convex pairwise costs
25First Problem
Wanted to model ?abik wab min d(i-k), M
For all li, lk ? I
Have modelled ?abik wab d(i-k) For all li,
lk ? I
Va
Vb
Overestimated pairwise potentials
26Second Problem
- Choose interval I of L labels
Non-submodular problem !!
Va
Vb
27Second Problem - Case 1
s
8
8
am1
bm1
am2
bm2
an
bn
t
Va
Vb
Both previous labels lie in interval
28Second Problem - Case 1
s
8
8
am1
bm1
am2
bm2
an
bn
t
Va
Vb
wab d(i-k)
29Second Problem - Case 2
s
8
ub
am1
bm1
am2
bm2
an
bn
t
Va
Vb
Only previous label of Va lies in interval
30Second Problem - Case 2
s
8
ub
M
am1
bm1
am2
bm2
an
bn
t
Va
Vb
ub unary potential of previous label of Vb
31Second Problem - Case 2
s
8
ub
M
am1
bm1
am2
bm2
an
bn
t
Va
Vb
wab d(i-k)
32Second Problem - Case 2
s
8
ub
M
am1
bm1
am2
bm2
an
bn
t
Va
Vb
wab ( d(i-m-1) M )
33Second Problem - Case 3
am1
bm1
am2
bm2
an
bn
t
Va
Vb
Only previous label of Vb lies in interval
34Second Problem - Case 3
s
8
ua
M
am1
bm1
am2
bm2
an
bn
t
Va
Vb
ua unary potential of previous label of Va
35Second Problem - Case 4
am1
bm1
am2
bm2
an
bn
t
Va
Vb
Both previous labels do not lie in interval
36Second Problem - Case 4
s
ua
ub
Pab
M
M
am1
bm1
ab
am2
bm2
an
bn
t
Va
Vb
Pab pairwise potential for previous labels
37Second Problem - Case 4
s
ua
ub
Pab
M
M
am1
bm1
ab
am2
bm2
an
bn
t
Va
Vb
wab d(i-k)
38Second Problem - Case 4
s
ua
ub
Pab
M
M
am1
bm1
ab
am2
bm2
an
bn
t
Va
Vb
wab ( d(i-m-1) M )
39Second Problem - Case 4
s
ua
ub
Pab
M
M
am1
bm1
ab
am2
bm2
an
bn
t
Va
Vb
Pab
40Graph Construction
Find st-MINCUT. Retain old labelling if energy
increases.
am1
bm1
am2
bm2
an
bn
t
Va
Vb
ITERATE
41Outline
- Move Space
- Graph Construction
- Sketch of the Analysis
- Results
42Analysis
Va
Vb
Current labelling f(.)
QC QC
QP
43Analysis
Va
Vb
Va
Vb
Current labelling f(.)
Partially Optimal f(.)
Q0
QC QC
44Analysis
Va
Vb
Va
Vb
Current labelling f(.)
Partially Optimal f(.)
QP- Q0
QP - QC
45Analysis
Va
Vb
Va
Vb
Va
Vb
Current labelling f(.)
Partially Optimal f(.)
Local Optimal f(.)
QP- Q0
0
0
QP - QC
46Analysis
Va
Vb
Va
Vb
Va
Vb
Current labelling f(.)
Partially Optimal f(.)
Local Optimal f(.)
QP- Q0
0
Take expectation over all intervals
47Analysis
Truncated Linear
L M
4
Gupta and Tardos, 2000
L v2M
2 v2
Truncated Quadratic
L vM
48Outline
- Move Space
- Graph Construction
- Sketch of the Analysis
- Results
49Synthetic Data - Truncated Linear
Energy
Time (sec)
Faster than TRW-S
Comparable to Range Moves
With LP Relaxation guarantees
50Synthetic Data - Truncated Quadratic
Energy
Time (sec)
Faster than TRW-S
Comparable to Range Moves
With LP Relaxation guarantees
51Stereo Correspondence
Disparity Map
Unary Potential Similarity of pixel colour
Pairwise Potential Truncated convex
52Stereo Correspondence
Teddy
53Stereo Correspondence
Teddy
54Stereo Correspondence
Tsukuba
55Summary
- Moves that give LP guarantees
- Similar results to TRW-S
- Faster than TRW-S because of graph cuts
56Questions Not Yet Answered
- Move-making gives LP guarantees
- True for all MAP estimation problems?
- Huber function? Parallel Imaging Problem?
- Primal-dual method?
- Solving more complex relaxations?
57Questions?
Improved Moves for Truncated Convex Models
Kumar and Torr, NIPS 2008
http//www.robots.ox.ac.uk/pawan/