Properties%20of%20SPT%20schedules - PowerPoint PPT Presentation

About This Presentation
Title:

Properties%20of%20SPT%20schedules

Description:

Properties of SPT schedules. Eric Angel, Evripidis Bampis, Fanny Pascual ... Algo which minimizes Cj . Class of the schedules which minimize Cj : ... – PowerPoint PPT presentation

Number of Views:73
Avg rating:3.0/5.0
Slides: 18
Provided by: fan597
Category:

less

Transcript and Presenter's Notes

Title: Properties%20of%20SPT%20schedules


1
Properties of SPT schedules
MISTA 2005
  • Eric Angel, Evripidis Bampis, Fanny Pascual
  • LaMI, university of Evry, France

2
Outline
  • Definition of an SPT schedule
  • Quality of SPT schedules on these criteria
  • Min. Max ?Cj minimization of the maximum sum of
    completion times per machine.
  • Fairness measure
  • Conclusion

3
Model
  • Example
  • Cj completion time of task j. (e.g. C34)
  • Main quality criteria
  • Makespan -gt (PCmax)
  • Sum of completion times ( ?Cj ) -gt (P ?Cj )

1
5
6
P1
n tasks m machines
2
4
P2
P3
3
time
4
SPT schedules
  • SPT Shortest Processing Time first
  • Smiths rule SPTgreedy
  • Sort tasks in order of increasing lengths.
  • Schedule them as soon as a machine is available.
  • Algo which minimizes ?Cj .
  • Class of the schedules which minimize ?Cj
  • Bruno et al Algorithms for minimizing mean
    flow time

5
SPT schedules
  • Bruno et al notion of rank.

The tasks of rank i are counted i times in the
?Cj ?Cj C1 C4 C7 C2 C5 C8
l(1) ( l(1) l(4) ) ( l(1) l(4)
l(7) ) 3 l(1) 2 l(4) l(7)
machine 1
  • A schedule minimizes ?Cj iff it is an SPT
    schedule.

6
Outline
  • Definition of an SPT schedule
  • Quality of SPT schedules on these criteria
  • Min. Max ?Cj minimization of the maximum sum of
    completion times per machine.
  • Example
  • NP-complete problem
  • Analysis of SPTgreedy
  • Fairness measure
  • Conclusion

7
Minimization of Max ?Cj
  • Pb Minimization of Max ? Cj
  • To minimize Max ?Cj ? To minimize ?Cj
  • Max ?Cj 7 Max ?Cj 6
  • ?Cj 10 ?Cj 11
  • NP-complete problem.

8
To minimize Max ?Cj is an NP-complete problem
  • We reduce the partition problem into a Min. Max
    ?Cj problem.
  • Partition Let C x1, x2, . . . , xn be a set
    of numbers. Does there exist a partition (A,B) of
    C such that ?x?A x ?x?B x ?
  • Min. Max ?Cj Let n tasks and m machines, and let
    k be a number. Does there exist a schedule such
    that Max ?Cj k ?

9
Min Max ?Cj is NP-complete
  • Transformation
  • Partition Cx1, x2, . . . , xn
  • Min. Max ?Cj k ½ Min ?Cj 2 machines2n tasks
  • Example C x1, x2, x3
  • Tasks

Claim Solution of (Min. Max ?Cj) ?
?Cj ?Cj k ½ Min ?Cj
P1
P2
?ce contrib ?Cj
x3
? x1 x2 x3
x1
x2
10
Min Max ?Cj is NP-complete
  • transformation
  • Partition Cx1, x2, . . . , xn.
  • Min. Max ?Cj k ½ Min ?Cj 2 machines 2n
    tasks.

tasks ?ce length rank ?ce contrib ?Cj

n
n - 1
n - 2
...
1
11
Min. Max ?Cj analysis of SPTgreedy
  • Theorem 1
  • The approx. ratio of SPTgreedy is
  • 3 3/m 1/m2 .
  • Theorem 2
  • The approx. ratio of SPTgreedy is
  • 2 2/(m2 m).

12
Min. Max ?Cj analysis of SPTgreedy
  • Theorem 2
  • The approx. ratio of SPTgreedy is 2 2/(m2
    m).
  • ( example for m3, ratio 11/6 )
  • Proof
  • m(m-1) tasks of length 1
  • A task of length B m(m1)/2
  • Example for m3

Max ?Cj 6
Max ?Cj 11
13
Outline
  • Definition of an SPT schedule
  • Quality of SPT schedules on these criteria
  • Min. Max ?Cj.
  • Fairness measure.
  • Conclusion

14
Fairness measure
  • Kumar, Kleinberg Fairness Measures For
    Ressources Allocation (FOCS 2000)
  • Definition global approx ratio of a schedule S
  • Max. ratio between the completion time of the ith
    task of S, and the min. completion time of the
    ith task of any other schedule.
  • I instance X (sorted) vector of completion
    times
  • C(X) min ? s.t. X ? ? Y ? Y feasible schedule
    of I
  • C(I) min C(X) s.t. X feasible schedule of I
  • C max C(I)

15
Fairness measure
Possible vectors X (1, 2, 5) (1, 3, 3) (1, 3,
5) (2, 3, 3) (2, 3, 4) (1, 3, 6) (1, 4, 6) (2, 3,
6) (2, 5, 6) (3, 4, 6) (3, 5, 6) Min (1, 2, 3)
  • Example

Vector X (1, 2, 4)
C (X) 4/3 C (I) 4/3

16
Fairness measure
  • Theorem 1
  • C(XSPTgreedy) 2 1/m.
  • ( example for m2, C(XSPTgreedy) 3/2 )
  • Theorem 2
  • C 3/2 when m2.
  • Proof of theorem 2

C (I) C 3/2
Vector X (1, 1, 3)
17
Conclusion Future work
  • Conclusion
  • Minimization ofMax ?Cj NP-complete pb.
  • SPTgreedy between 2 2/(m2 m) and 3 3/m
    1/m2 for Min. Max ?Cj.
  • Good fairness measure for SPTgreedy.
  • Future work
  • A better bound for SPTgreedy for Min. Max ?Cj.
  • Study of fairness measure on other problems.
Write a Comment
User Comments (0)
About PowerShow.com