Title: Computer Security Lecture 25
1Computer SecurityLecture 25
- Phillip G. Bradford
- Department of Computer Science
- The University of Alabama
2Outline
- More Kerberos
- Starting Auctions
- Potential exam problems
3Objectives
- Understanding some of Kerberos
- E-Auction Issues
- Exam-type problems
4Credits
- Kerberos discussion
- See William Stallings Cryptography and Network
Security, 3rd edition, 2002. - H. Nurmi and A. Salomaa (1993) Cryptographic
Protocols for Vickrey Auctions, Group Decision
and Negotiation, Vol. 2, 363-373.
5Announcements
- Tom Cormen, Dartmouth College
- Parallel Out-of-Core Sorting The Third Way
- Friday _at_ 11am in East Eng. 119
6Kerberos
- Client/Server Model
- How might we suggest securing the C/S model?
- Three key threats
- Physically log into a secure work station
- Steal impersonate network address
- Replay Attacks
- RFC 1510
7Kerberos
- Why the KDC Model?
- Avoid complex tracking for C/S model
- Symmetric (private key) crypto
- Why might this be?
- Authentication Server (AS)
- Distributed authentication of valid users
- Shares a unique secret key with each server
8Kerberos (AS)
- AS has central database with ids keys
- Suppose we have n servers
- Key shared with each server total of n keys
- Assume the n keys are physically given to each
server - Issues?
9Authentication Server Example
- All Transactions Could Use Pair Keys
- Client ? AS
- IDclient Passwordclient IDserver
- AS ? C
- Ticket EK(s)IDclient, C_NetAddr,IDserver
- C_NetAddr client network address
- Client ? Server
- IDclient Ticket
10Authentication Server Example
- AS checks Clients password Server access in
Database - Ticket EK(s)IDclient, C_NetAddr,IDserver
- Is encrypted using the symmetric key shared by
- AS and Server!
- The Client does not know K(s) !
- Why?
- Cant change Ticket
11Authentication Server Example
- Why does the Client send Server
- IDclient Ticket ?
- The server can unencrypt the Ticket verify it
is from the correct client - Also, C_NetAddress in Ticket
- Prevents replay attack Mallory listens copies
Ticket sent from AS to Client - Prevents another client (at a different network
address) from using the same Ticket to
misrepresent themselves
12How Safe is C_NetAddress ?
- Name Servers physical security
- How do Domain Name Servers (DNS) work?
- Tables of domain-names with their IP addresses
- Why?
- Names as property Fees for such protection
- Keep security of Domain names IP addresses
- Physical Logical Protection
13The Costs of TicketsThe Costs of Not Having Tix
- Lots of Tickets can be costly
- In Bandwidth generation cost
- Those 100 print-jobs/day
- Take a heavily used server
- TGS Ticket Granting Server
- TGT Ticket Granting Ticket
- More general solution
14More Robust Flexible Authentication
- To begin a Session (logging in)
- Client ? AS
- IDclient IDtgs
- AS ? Client
- Ek(c)Tickettgs
- Service Type Initiation
- Client ? TGS
- IDclient IDserver Tickettgs
15More Robust Flexible Authentication
- Service Type, Cont.
- TGS ? Client
- Ticketserver
- Each Server Session
- Client ? Server
- IDclient Ticketserver
- Each ticket (Tickettgs,Ticketserver) now has
- A time-stamp
- A lifetime
16More Robust Flexible Authentication
- Do these transmissions need to be secure?
- No passwords transmitted across the network
17Trade-offs
- Short lifetimes lots of re-authentication
- Long lifetimes more chance of attacks working
- Grabbing an illicit TGS
- Help prove TGS must demonstrate ticket holder
actually issued the ticket - Protecting against this
18Other issues
19E-Auction Objectives
- Get students interested in applications of
Computer Security to E-Auctions - Learn a little about the application domain on
the Internet - Present a very interesting protocol by A.-C. Yao
- Changes the identity question to less information
of the indices of the items
20E-AuctionsNurmi Salomaa
- Public key encryption eA and eB
- Private key encryption dA and dB
- Main commutativity assumption
- dB(eA(m)) eA(dB(m)) m
- Vickrey Auctions and bidding our Utility
- Secrecy is important to participants
21E-AuctionsNurmi Salomaa
- Protocol 1 Standard Secure Transfer
- Alice has m, computes dA(m)
- Alice computes eB(dA(m)) and send to Bob
- Bob computes dB(eB(dA(m))) dA(m)
- Bob finally computes eA(dA(m)) m
22A.C. Yaos Millionaires Protocol
- Let a be Alices Bid
- Let b be Bobs Bid
23A.C. Yaos Millionaires Protocol Used in
Protocol 3 of Nurmi Salomaa
- Assume the range of inputs is in
- 1,,100 Bobs Bid is b
- Bob privately computes random x
- Lets k eA(x) and sends (k b) to Alice
- Alice privately computes
- yi dA(k - b i) for all i in 1,,100
24A.C. Yaos Millionaires Protocol
- Alice for all i in 1,,100 find a prime q so
that zi zj gt 2 - and zi lt q-1
- Where zi yi mod q and be sure q is smaller than
x pre-agreed - Alice sends Bob the sequence
- z1, , za, za1 1, , z1001, q
25A.C. Yaos Millionaires Protocol
- Bob determines which of
- If Zb x mod q, then b lt a
- If Zb ! x mod q, then b gt a
- Bob tells Alice his conclusion, then the loosing
bidder sends the winner their private key for
verification
26Schneiers Example
- Use RSA
- Bobs
- Public key lt7,55gt
- Private Key lt23,55gt
- Suppose all possible values are 1,2,3,4
- Bobs secret value j 2
- Alices secret value i 4
27Schneiers Example
- Bobs 4 numbers
- y1 de(151) 26
- y2 de(151) 18
- y3 de(151) 2
- y4 de(151) 39
- Transformation choose p 31
- z1 26 mod 31 26
- z2 18 mod 31 18
- z3 2 mod 31 2
- z4 39 mod 31 8
28Schneiers Example
- Bob sends Alice
- lt26, 18, 21, 81, 31gt
- Alice checks if 81 9 is congruent to y mod 31
- If 39 mod 31 9, then i gt j
- Else j lt i