Title: Proposed Indian Spallation Neutron Source
1Proposed Indian Spallation Neutron Source
2Schematic Layout of SNS
3Choice of Parameters
- For given output power of booster (100 kW)
- Injection energy
- Booster energy
- Repetition frequency
Technical compatibility minimum cost
4Choice of Parameters
5Choice of Parameters (cont.)
6ParametersLinac cost
7ParametersSynchrotron cost
8ParametersTotal cost
9Chosen Parameters
- Injection Energy 100 MeV
- Booster Energy 1 GeV
- Repetition Rate 25 Hz
- Beam Power 100 kW
10Brief Parameters
11Brief Parameters
12RF driven multicusp H- Ion Source
- Parameters
- Components
- Plasma chamber and vacuum system
- Magnetic field configuration
- RF generator / amplifier and impedance matching
network - Magnetic filter and RF antenna
- High voltage insulator dome and platform
- Beam extraction system
- Supervisory control system
13...RF driven multicusp H- Ion Source
14Chopping Scheme
15RFQDesign Parameters
16RFQ
17DTLGeometric Details
18100 MeV DTL Summary
19100 MeV DTL Summary cont.
20Engineering Design of DTL
- Structural stability of cylindrical cavity
- Thermal stability of DTL tank and drift tubes
- RF and Vacuum compatibility of the structure
- Cooling circuit design and layout
- Vacuum system design of Proton linear
accelerator. - Support and alignment system
21DTL
22RF System for RFQ and DTL
- Designed in 1 MW modules, total 17 modules
- One module for RFQ and 16 for DTL
- (RFQ operating at 350 MHz needs 750 kW RF power,
615 kW loss 135 kW beam power) - Designed for 100 MeV, 25mA beam of 500 µs
duration with 25Hz repetition - Components of a module
- High power klystrons 1MW/2MW at 350 MHz
- Klystron pulse modulator
- Waveguide transmission system
- Driver amplifiers
- Low level electronics
- Safety interlocks, and supervisory control
systems
23RF SystemKlystron Specifications
- Frequency of operation 350MHz/-2.5MHz
- Output peak power 1MW or 2MW
- Output RF pulse duration 700 µs
- Gain 43dB
- Maximum drive power 200W
- Efficiency 60
- Output waveguide WR 2300
- Focusing Electromagnet
24RF Feed for 100 MeV Linac
25Proton Synchrotron
26Proton Synchrotron
27Proton Synchrotron
28 Proton Synchrotron Magnet System
29Proton Synchrotron Magnet System
- Dipoleparameters
- Cross Section
30Proton Synchrotron Magnet System
- Quadrupoleparameters
- Cross Section
31Proton Synchrotron Magnet System
- Sextupoleparameters
- Cross Section
32Proton Synchrotron Magnet System
- Injection systempulsed magnets
33 Proton Synchrotron Magnet System
- Parameters of Injection Magnets
34 Proton Synchrotron Magnet System
- Parameters of Extraction Kickers
- Parameters of Extraction Septums
35 Proton Synchrotron Power Supplies
- Magnet Specifications (Electrical)
36 Proton Synchrotron Power Supplies
37 Proton Synchrotron Power Supplies
- Resonant Excitation Scheme
38 Proton Synchrotron Power Supplies
39 Proton Synchrotron Power Supplies
- Resonant Circuit Components
40 Proton Synchrotron Power Supplies
41 Proton Synchrotron Power Supplies
42 Proton Synchrotron Power Supplies
43 Proton Synchrotron - Pulse Power Supplies
- Power Supplies for Injection Magnets
44 Proton Synchrotron - Pulse Power Supplies
- Power Supplies for Extraction Magnets
45Proton Synchrotron - Pulse Power Supplies
- Schemes
- Vertical dipole magnet p/s Bumper magnet p/s
- Extraction kicker magnet p/s
46 Proton Synchrotron RF System
47Proton Synchrotron RF System
- RF Cavity
- Geometrical Parameters
-
48Proton Synchrotron RF System
49Proton Synchrotron RF System
- RF Cavity
- Operating Characteristics
-
50Proton Synchrotron RF System
- RF Power Source
- Operating Parameters of RF Power Amplifier
-
51Proton Synchrotron Vacuum System
- 1 x 10-8 mbar
- Cross Section
- Plan view dipole chamber
-
52Proton Synchrotron Vacuum System
- Metallic ?
- Epoxy resin or plastic ?
- Glass ?
- Ceramic ?
-
53Proton Synchrotron Vacuum System
- Simulated pressure distribution in half unit
cell -
54Proton Synchrotron Vacuum System
55Proton Synchrotron Beam Diagnostics
- Components...
- Beam current transformers
- Beam position monitors
- Tune measurement system
- Moving wire scanner
- Faraday cups
- Beam loss monitoring system
56Proton Synchrotron Target System
- Proton stopping length in the material used in
the design. - Neutron absorption has to be minimum so that more
neutrons can penetrate through to the blanket - Neutron distribution is axi-symmetric and as
uniform as possible over the length of the core
to simplify core management issues. - Neutron spectrums to be appropriate to
efficiently initiate a fission chain and drive a
sub-critical assembly. - To minimize beam power requirements the target
needs to have high production efficiency. - The yield gt25 neutrons per proton are suitable.
57Calculated values of total leakage neutrons Y,
from various bare targets as a function of proton
energy. Sub 15 MeV neutron means that high energy
neutrons are not included. A cylindrical target,
10 cm in diameter and 32 cm in length is assumed
with a cylindrical proton beam profile of 4.7 cm
in diameter.
58Proton Synchrotron Target System
59Proton Synchrotron Building
- Linac and RF Equipment Gallery
-
60Proton Synchrotron Building
61