Title: N Isotope Geochem
1N Isotope Geochem
- Provide overview of Diversity of approaches
- Marine N Cycle Background
- Observational approaches w/r to Natural
Abundance of N - Biological oceanog/ Paleoecology
- Experimental approaches
- Tracer methodology
- Web site
- http//www.usc.edu/dept/LAS/biosci/tricho
2Disclaimer
- Im NOT an isotope geochemist!
- (thats why Im in the class!)
- Experimentally-oriented microbial ecologist who
stumbled in - First w/ tracers
- More recently using natural abundance approaches
3MARINE N CYCLE(why do we care?)
- Primary limiting nutrient in most of ocean
- Major control on primary productivity and C
export - Control on climate? Paleo analysis
- Regional, basin scale and atmospheric
perturbations
4(No Transcript)
5N Cycle Pools
- N2 dominates- but largely unavailable
- Large deep pools of NO3-, DON
- Pacificward enrichment
6 - Oceanic N Concentrations and Inventories
TOTAL gN x1015
Species
Surface
Deep
Estuarine µM
Coastal
Reefs
22,000
N
800
1150
700 - 1100
700 - 1100
-
2
_ 3
570
NO
0.2
35
0 - 30
0 - 350
0.1 - 2.7
_ 2
-
NO
0.1
lt 0.1
0 - 2
0 - 30
0.02 - 0.16
4
7
NH
lt 0.5
3
0 - 25
0 - 600
0.02 - 1.7
550
DON
5
3
3 - 10
5 - 150
2- (70)
PON
0.4
lt 0.1
0.1 - 2
1 - 100
-
3 - 24
7(No Transcript)
8(No Transcript)
9(No Transcript)
10N Cycle Features
- Phase transitions
- Oxidation/ reduction reactions
- Largely biological/ microbial
- Trophic Structure
- Habitat/ Environment Specific Components
- Photic/ aphotic (or shallow/ deep)
- (e.g. NO3- uptake vs. nitrification)
- Aerobic/ anaerobic (nitrification vs.
denitrification) - Pelagic/ benthic
- Coastal/ pelagic (quantitative aspects)
11(No Transcript)
12(No Transcript)
13New Production Model
- Dugdale Goering (1967)
- Eppley Peterson (1979)
- Recognized different forms of N
- Recycled (regenerated N)
- New (from external to the system
- Production based on new N set a limit on
exportable production - Research has largely focused on NO3-
14New Production Paradigm (after Dugdale Goering
1967)
N2 / CO2 (atm)
algae
zoop
New N
NH4
Recycled N
thermocline
NO3- / CO2 (deep) _at_ Redfield ratio
POC/PONdown
NH4
NO3-
? PONdown ? uptake NO3- N2 since CO2 /
NO3- upwell ? C/N POMdown POCatm-down ?
uptake N2 C/Ndown
Sea Floor
0 15 30 NO3-, µM
15Oceanic N demand- large flux
- 7200 Tg Total primary production
- 2500 Tg N/ y for net primary production
- (i.e. export) (NPP)
- 250 Tg N/ y for sequestered production
- (i.e. that required for ocean biology to fix 1.5
Pg C)
16Natural Abundance Approach
- Trophodynamic structure/ interactions
- Nutrient (NO3-) use, tracking
- e.g. sewage
- Paleoecology
- Nutrient limitation
- N2 fixation/ Denitrification over
- glacial-interglacial periods
- N2O sources/ sinks
1715N Natural Abundance
- Natural abundance of 15N 0.3663 atm
- Slight natural variation through isotopic
discrimination - Determined by isotope ratio mass spectrometry
- Generally expressed in del units
- ?15N (RS- RR )/RR 1000 or
Rs/RR-1 1000 - where RS 15N/14N in sample, RR 15N/14N in
reference relative to N2 in air, where N2 in air
(0.3663 atm ) defined as 0 - N2 fixation effects little isotopic
discrimination (relative to other N
transformation pathways) and results in biomass
with a ?15N near 0
18Reminders
- Fractionation factor
- ? Rp / Rs
- Enrichment factor (generally negative)
- ? (? -1) 1000 ?p- ?s x 1000
-
?s 1000 - Isotopic discrimination
- ? ?p- ?s
19Limitations
- Mass requirements
- Low levels of many pools, e.g. NO3-, NH4
- Imposed fractionation with concentration and pool
separation - Require 100 efficency
- Operational definitions
- e.g. PON gt 0.6 ?m (GF/F)
20(No Transcript)
21(No Transcript)
22Nitrogen Isotope Fractionation
23(No Transcript)
24NO3- Pool Dynamics
- Strong fractionation w/ uptake
- Rayleigh fractionation
- Concentration dependent
- Basin differences
- Denitrification/ N2 fixation effects
- Typically low concentrations in upper water
column make it difficult to measure
25Global average 4.5 to 5.0
20
Pelagic denitrification ? -20
?15N
Nitrate uptake ? -5
10
Addition of diazotroph N to nitrate pool ?
0 to -1
NO3
Sediment denitrification ? -0
Nitrification
0
0 100 200 of Original Pool
2620
?15N
Nitrification ? 0 to -20
10
Ammonium uptake ? (-5 ??)
Addition of diazotroph N to NH4 pool ? 0 to
-1
NH4
Ammonification ? (-3 to -5 ??)
0
0 100 200 of Original Pool
27(No Transcript)
28(No Transcript)
29Brandes et al. 1999
30Sedimentary Imprint of NO3- Utilization- Altabet
et al.
- Inverse correlation between surface NO3-
concentration (more specifically utilization) and
sediment surface ?15N - Greater drawdown, less fractionation
- Regional differences in apparent fractionation
- Pacific - -2.5
- Southern Ocean- -7 to -11
- Residence time issues
31(No Transcript)
32(No Transcript)
33Classical food chain
N2 fixation-based food chain
34(No Transcript)
35(No Transcript)
36(No Transcript)
37Trichodesmium spp.Best Known Planktonic
Diazotroph
38(No Transcript)
39(No Transcript)
40(No Transcript)
41(No Transcript)
42(No Transcript)
43(No Transcript)
44(No Transcript)
45(No Transcript)
46(No Transcript)
47(No Transcript)
48(No Transcript)
49(No Transcript)
50Paleoecology/ -oceanography
- Imprint of Processes on PON
- NO3- utilization efficiency
- (higher del w/ greater use
- Denitrification (increase)
- N2 fixation (decrease)
51(No Transcript)
52(No Transcript)
53(No Transcript)
54(No Transcript)
55(No Transcript)
56Take home Depends where you are!
57N2O Production in the Sea
- Potent Greenhouse gas
- Radiative forcing/ ozone depletion
- Increasing in atmosphere
- Oceans are a slight source
- Denitrification originally thought to be source
- Nitrification also
- denitrifying Nitrifiers??
- Net Ocean flux ? 4 Tg Global sum ? 16 Tg
58Nitrification
NH4 (lt 4.5)
NH2OH
NO2
NO3
NO
NOH
Nitrifier denitrification
N2O
N2
NO
NO2
Denitrification
NO3 (? 4.5 )
59(No Transcript)
60(No Transcript)