Thank you for coming here! - PowerPoint PPT Presentation

About This Presentation
Title:

Thank you for coming here!

Description:

Use it to find features of a data set and record your result; A quick after-experiment feedback. ... Feature Finding. Brushing ... – PowerPoint PPT presentation

Number of Views:23
Avg rating:3.0/5.0
Slides: 40
Provided by: sysa159
Learn more at: https://davis.wpi.edu
Category:
Tags: coming | finding | here | thank

less

Transcript and Presenter's Notes

Title: Thank you for coming here!


1
Thank you for coming here!
2
Purpose of Experiment
  • Compare two visualization systems.
  • You will play with one of them.

3
What will you do?
  • Learn a multidimensional visualization system
  • Use it to find features of a data set and record
    your result
  • A quick after-experiment feedback.

4
Schedule
  • First, I will present ...
  • Multidimensional data
  • Hierarchical Parallel Coordinates
  • Brushing
  • Feature finding
  • Introduce the visualization system

5
Schedule
  • Then, You will do ...
  • Experiment
  • -Find features of a given data set using
    the visualization system
  • -Record the features you find
  • Fill feedback form.

6
Outline
  • Multidimensional Data
  • How to represent multidimensional data
  • Parallel Coordinates
  • Hierarchical Clustering
  • Hierarchical Parallel Coordinates
  • Brushing Operation
  • Feature Finding

7
Multidimensional DataExample Iris Data
Scientists measured the sepal length, sepal
width, petal length, petal width of many kinds
of iris...
8
Multidimensional DataExample Iris Data
9
Outline
  • Multidimensional Data
  • How to represent multidimensional data
  • Parallel Coordinates
  • Hierarchical Clustering
  • Hierarchical Parallel Coordinates
  • Brushing Operation
  • Feature Finding

10
Parallel Coordinates One-Dimensional Data
(1.6)
2
1
11
Parallel Coordinates 4-Dimensional Iris Data Set
12
3.5
5.1
1.4
0.2
13
(No Transcript)
14
Outline
  • Multidimensional Data
  • How to represent multidimensional data
  • Parallel Coordinates
  • Hierarchical Clustering
  • Hierarchical Parallel Coordinates
  • Brushing Operation
  • Feature Finding

15
Hierarchical ClusteringHierarchical Cluster Tree
A cluster tree
16
Hierarchical ClusteringMean, Extent
y
P1( 3, 6) p2( 5, 5) Mean Point of C1
(P1P2)/2 (4, 5.5) Extent of C1 x3, 5
y5, 6
P1
P2
C1
x
17
Outline
  • Multidimensional Data
  • How to represent multidimensional data
  • Parallel Coordinates
  • Hierarchical Clustering
  • Hierarchical Parallel Coordinates
  • Brushing Operation
  • Feature Finding

18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
Outline
  • Multidimensional Data
  • How to represent multidimensional data
  • Parallel Coordinates
  • Hierarchical Clustering
  • Hierarchical Parallel Coordinates
  • Brushing Operation
  • Feature Finding

28
Brushing
Brushing - Highlighting part of the clusters to
distinguish them from the other clusters.
29
(No Transcript)
30
(No Transcript)
31
(No Transcript)
32
(No Transcript)
33
Outline
  • Multidimensional Data
  • How to represent multidimensional data
  • Parallel Coordinates
  • Hierarchical Clustering
  • Hierarchical Parallel Coordinates
  • Brushing Operation
  • Feature Finding

34
Feature Finding
Feature - Anything you find from the data set.
Cluster - A group of data items that are similar
in all dimensions. Outlier - A data item that is
similar to FEW or No other data items.
35
(No Transcript)
36
(No Transcript)
37
(No Transcript)
38
(No Transcript)
39
Other features
You can record anything else you find with the
help of the visualization system.
Write a Comment
User Comments (0)
About PowerShow.com