Probability and the Normal Distribution - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Probability and the Normal Distribution

Description:

Finding Probabilities Associated with Z-scores ... Finding Probabilities Associated with Raw Scores ... – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 23
Provided by: heathe3
Category:

less

Transcript and Presenter's Notes

Title: Probability and the Normal Distribution


1
Probability and the Normal Distribution
2
Why is probability important?
  • Allows us to make inferences about populations.

3
Random Sampling
  • Two Requirements of Random Sampling
  • Each individual in a population has an equal
    chance of being selected
  • We use Sampling with Replacement each sample is
    replaced before the next selection is made.

4
Probability and Frequency Distributions
5
Probability and Frequency Tables
  • Whats the probability of scoring an 8 on the
    quiz?
  • p f/N 3/30 .10
  • Whats the probability of scoring an 8 or higher
    on the quiz?
  • p f/N 6/30 .20
  • Whats the probability of scoring at least a 5 on
    the quiz?
  • p f/N 20/30 .67

6
The Standard Normal Curve and Probability
Assessments
7
Uses for the Standard Normal Curve
8
Assumptions of Standard Normal Curve Problems
  • 1. The variable is normally distributed
  • 2. The mean and standard deviation for the
    population is known.
  • The SNC does not apply if these two assumptions
    are not met.

9
Finding Probabilities Associated with Z-scores
  • What proportion of the distribution falls above z
    1.5?

10
Finding Probabilities Associated with Z-scores
  • What percentage of the distribution falls below z
    -.50?

11
Finding Probabilities Associated with Z-scores
  • What percentage of the distribution falls between
    the mean and z -.50?

12
Finding Probabilities Associated with Z-scores
  • What percentage of the distribution falls between
    z 1.00 and z 1.50?

13
Finding Probabilities Associated with Z-scores
  • What percentage of the distribution falls between
    z 1.00 and z 1.50?

14
Finding Probabilities Associated with Z-scores
  • What percentage of students score below 70 on the
    test?

15
Finding Probabilities Associated with Raw Scores
  • What percentage of students score below 70 on the
    test?

16
Finding Probabilities Associated with Raw Scores
  • What proportion of students score between 60 and
    80 on the test (µ 60 and s 10)?

17
Finding Probabilities Associated with Raw Scores
  • What z-score separates the upper 10 from the
    lower 90 of a distribution?

18
Finding Probabilities Associated with Raw Scores
  • What z-score separates the lower 25 from the
    upper 75 of a distribution?

19
Finding Probabilities Associated with Raw Scores
  • What z-score separates the lower 25 from the
    upper 75 of a distribution?

20
Determining Raw Scores Given a Probability
  • In a normal distribution with µ 50 and s 10,
    what raw score separates the lowest 25 from
    upper 75 of the distribution?
  • X µ z s
  • X 50 (-.67)(10) 43.30

Z-score value found in Unit Normal Table (see
previous problem)
21
Determining Raw Scores Given a Percentile
  • Students in the 95th percentile or higher in your
    bio class get an A. Whats the lowest score that
    you could earn to get an A if µ 60 and s 10
    in this class?

22
Determining Raw Scores Given a Percentile
  • For the 95th percentile z 1.64
  • X µ z s
  • X 60 (1.64)(10) 76.40
  • You need to earn at least 76.40 to get an A in
    the course.
Write a Comment
User Comments (0)
About PowerShow.com