Title: Exponents and Logarithms
1Exponents and Logarithms
In general, an exponential function is of the
form f(x) ax where a gt 0 is a constant
A logarithmic function is of the form f(x)
logax where a gt 0 is a constant.
2Exponential Functions
- The graph of an exponential function f(x) ax
where a gt 1 looks like
e.g. This is y 2x
All exponential functions pass through the point
(0,1) and are asymptotic to the x-axis.
3Graphs of Exponential Functions
4The yex Function
5Exponential functions where 0 lt a lt 1
- Recall from earlier discussions how f(-x)
differs from f(x). - So, if f(x) 2x, then f(-x) 2-x
(2-1)x or ( ½ )x whose graph looks like
6Inverse Functions
- 1-1 Functions f(x) f(y) --gt x y
- horizontal line test
f(x) x3 2 Show this function to be 1-1 and
find its inverse.
The graph shows that the function is 1-1 since it
passes the horizontal line test.
7Finding the Inverse Function
- 1. Write the function solved for y as a
function of x. - 2. Interchange the variables x and y.
- 3. Solve the new equation for y.
- 1. f(x) x3 2 --gt y x3 2
- 2. x y3 2
- 3. x - 2 y3 or y (x - 2)(1/3)
8y x3 2 blue y (x - 2)(1/3) red
y x
9Find the inverse for f(x)
y
x
x2 -1 - y y -x2 - 1 x ? 0
10 Find and graph the inverse function using
parametric equations.
Original function x(t) t
Inverse function y(t) t
11The Graph
Original Function
Inverse Function
12Logarithmic Functions
- Logarithms are inverse functions for exponential
functions - f(x) 2x f-1(x) log2x
13Definition of a Logarithm
Common Logs -- Base 10 Log 7 means log10
7 Natural Logs -- Base e ln 14.3 means
loge 14.3
14Laws of Logarithms
- loga(x y) logax logay xgt0, ygt0
- log2(4 x 8) log24 log28 2 3 5
- loga(x/y) logax - logay
- log5(25/125) log525 - log5125 2 - 3 -1
- loga(xr) r logax where r is any Real no.
- log1021024 1024 log102 1024 x .3010
- 308.224
15Examples
4
log 1000
3
6
log7 493
log2 ½
-1
ln e5
5
log5
1/3
log9 27
2/3
-3
log1/2 8
16Example Given log 2 .3010, log 3
.4771, Find
- log 4
- log 8
- log 6
- log 9
- log 5
- log 12
- log 30
- log 3,000,000
17Change of Base Formula
For example Find log795
18Sketch the graph of y ln(x - 2) - 1
19y ln(x - 2)
20y ln(x - 2) - 1