M110 CLASS NOTES - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

M110 CLASS NOTES

Description:

Both of these functions are invertible. The Graphs of f-1(x) for f(x) = ax. a ... loge x = ln x The 'Natural Logarithm' log10 x = log x The 'Common Logarithm' ... – PowerPoint PPT presentation

Number of Views:24
Avg rating:3.0/5.0
Slides: 25
Provided by: cent175
Category:
Tags: class | notes | loge | m110

less

Transcript and Presenter's Notes

Title: M110 CLASS NOTES


1
M110 CLASS NOTES
  • SECTION 5.2
  • LOGARITHMIC FUNCTIONS

2
RECALL
EXPONENTIAL GROWTH EXPONENTIAL DECAY
a gt 1 0 lt
a lt 1
1
1
3
NOTICE
EXPONENTIAL GROWTH EXPONENTIAL DECAY
a gt 1 0 lt
a lt 1
1
1
Both of these functions are invertible
4
The Graphs of f-1(x) for f(x) ax
a gt 1 0 lt
a lt 1
1
1
5
Notation for f-1(x) Where f(x) ax
a gt 1 0 lt
a lt 1
1
1
g(x) loga(x)
6
PROPERTIES OF THE INVERSE
f-1(f(x)) f-1(ax) x
so f(f-1(x)) x so
7
PROPERTIES OF THE INVERSE
y ax
x y
loga(y) x
8
EXAMPLES Find the Value
  • log39
  • log28
  • log2(1/2)
  • log1/24
  • log51

9
EXAMPLES Find the Value
  • log39 2 (because 32 9)
  • log28
  • log2(1/2)
  • log1/24
  • log51

10
EXAMPLES Find the Value
  • log39 2 (because 32 9)
  • log28 3 (because 23 8)
  • log2(1/2)
  • log1/24
  • log51

11
EXAMPLES Find the Value
  • log39 2 (because 32 9)
  • log28 3 (because 23 8)
  • log2(1/2) -1 (because 2-1 1/2)
  • log1/24
  • log51

12
EXAMPLES Find the Value
  • log39 2 (because 32 9)
  • log28 3 (because 23 8)
  • log2(1/2) -1 (because 2-1 1/2)
  • log1/24 -2 (because (1/2)-2 4)
  • log51

13
EXAMPLES Find the Value
  • log39 2 (because 32 9)
  • log28 3 (because 23 8)
  • log2(1/2) -1 (because 2-1 1/2)
  • log1/24 -2 (because (1/2)-2 4)
  • log51 0 (because 50 1)

14
EXAMPLES Solve
  • log3x -2
  • logx10 2
  • log2(23) x

15
EXAMPLES Solve
  • log3x -2 3-2 x 1/32 x x 1/9
  • logx10 2
  • log2(23) x

16
EXAMPLES Solve
  • log3x -2 3-2 x 1/32 x x 1/9
  • logx10 2 x2 10 x
  • log2(23) x

17
EXAMPLES Solve
  • log3x -2 3-2 x 1/32 x x 1/9
  • logx10 2 x2 10 x
  • log2(23) x 2x 23 x 3

18
NOTATION
  • loge x ln x
    The Natural Logarithm
  • log10 x log x
    The Common Logarithm

19
PROPERTIES USING THE NOTATION
  • ln ex x
  • log 10x x
  • eln x x
  • 10log x x

20
EXAMPLES Find the domain of
  • f(x) log (x 3)
  • f(x) ln (2 6x)
  • f(x) log5 (x2 2x)

21
EXAMPLES Find the domain of
  • f(x) log (x 3)
  • x 3 gt 0 x gt -3 (-3, ?)
  • f(x) ln (2 6x)
  • f(x) log5 (x2 2x)

22
EXAMPLES Find the domain of
  • f(x) log (x 3)
  • x 3 gt 0 x gt -3 (-3, ?)
  • f(x) ln (2 6x)
  • 2 6x gt 0 -6x gt -2 x lt 1/3 (-?,
    1/3)
  • f(x) log5 (x2 2x)

23
EXAMPLES Find the domain of
  • f(x) log (x 3)
  • x 3 gt 0 x gt -3 (-3, ?)
  • f(x) ln (2 6x)
  • 2 6x gt 0 -6x gt -2 x lt 1/3 (-?,
    1/3)
  • f(x) log5 (x2 2x)
  • x2 2x gt 0 (-?, 0) ? (2, ?)

24
End of Section 5.2
Write a Comment
User Comments (0)
About PowerShow.com