Title: Jack
1Jack Jill
- AI composition/listening system in progress
2Differences between AI composing and
- Algorithmic composing
- Transformation of input to output (could be
random numbers) that is decoded by a human
listener as music. - Xenakis, Gendy
- Outcome/performance algorithm
- Use templates/rules/heuristics to construct/limit
music (eg, constrain proportion of steps/leaps,
adapt 18th C. theorists, use statistical models
of existing music) - Band in a box
- Genetic algorithm with fitness measure
- Develop/learn interestingness rules
- User response model
- Learns to play like you. All the time,
continuously. - Machine learning
- Pachet, Continuator
- Process model
3Theorizing what music sounds like
- In principle, necessary to theorize the affective
feel of music - Category problem Does it sound like music?
- Expectation model does it violate expectations
we have about how it should/should not go? - Boredom/anxiety model optimal complexity
theory of Berlyne --- too much or too little? - Shape/pattern model detailed analysis of
patterned Gestalts ( wholes) can answer many
of these questions
4The shape of music
- Shape Gestalt ( Prägnanz )
- Intuitive concept informally used by many music
theorists (L. B. Meyer, C. Rosen) without
explication - I recognized the shape of your voice
something specific and particular, yet similar to
many other things - Easily recognized in many different contexts
- Figure-ground separation as a condition of
objecthood (Kubovy) - Much research on grouping, but no real
shape-psychology of music
5Gestalt theory approach
Major idea given a variety of possible
groupings, humans prefer the simplest (e.g.,
Lehrdahl Jackendoff).
- The perceived perceptual description is B.
- Aesthetic problem does that make C more
interesting?
6Patterns of shape
- Intuitively, shapes are those things in music
that we easily take in as a whole, and which we
almost cant fail to notice - The complexity of perceived shape is probably
limited - The simplest shapes are the simplest patterns
- Basic idea everything in music is under the
control of underlying simple patterns - In order to theorize patterns, we need a theory
of pattern simplicity. - Structural information theory offers ideas.
7Structural Information Theory (Leeuwenberg, 1971)
- Computational theory of how to recognize pattern
simplicity supported by empirical studies - Takes 1D strings as input, but these can be used
to represent higher-dimensional objects - Three kinds of codes Iteration, Symmetry,
Alternation (recursively applicable) - Patterns are expressed as codes (eg, aaaa -gt
Iterate (a, 4) ) - One pattern generates many codes (eg, aaaa -gt
Symmetric (aa) ) - Minimum principle The simplest code reflects the
preferred perceptual organization - Straightforward complexity metric The number of
primitive elements in the code (parameter load)
is a measure of simplicity - SIT can consider context.
8Structural Information Theory, cont.
(Leeuwenberg, 1971)
- Example. Iterate (a, 4) has one primitive element
(a) - Symmetric (aa) has 2
- So Iterate is simpler.
- Problem with this ahead
- Tractable solutions exist. Finding the simplest
code seems to mean generating all possible codes
and applying a complexity metric a
combinatorial explosion. However, Helm
Leeuwenberg (1985) provide an algorithm that
solves for simplest code using graph theory. - Further, an deterministic algorithm to solve
analogies using SIT has been developed (Dastani,
2003). - SIT therefore provides a powerful
mathematically-anchored basis for reasoning about
music computationally.
9Structural Information Theory is not a theory of
music
- Unfortunately the proposed coding language is
without doubt inappropriate for music. This can
be made clear by looking at the structures of
some famous melodies from the viewpoint of the
proposed language no aesthetic principles
emerge. (Leeuwenberg, 1971) - Musical problem human propensity to (e.g.) group
things in pairs does not recommend straight SIT. - But this can be addressed.
10Organization of this talk
- Shape
- Shape analysis
- An example of a shape schema
- Pattern
- Constructing variations of folksongs
- Constructing simple canonical variations
11Shape analysis
- the way things go up and down
- the way things parallel one another relative to
up and down in whole or part -- patterns - the way in which a rhythm moves motion
- The way an object moves against a previous
context variation - the rhythm of old new -- grow
- the rhythm of excitation refraction
- the patterns of patterns of (recursive
application) - Recursively the sense of an underlying shape
- ( etc.)
- Shapes are therefore about motion, pattern,
growth, variation and other things. Shapes give
us a sense of wholeness and of particularity. - Those things we hear at a glance.
12Shapes are schemas
- Bartlett (1932), Piaget, Axelrod (1973), Drescher
(1991), Bregman - A preexisting assumption about the way the world
organized (Axelrod) - Context, action, result (Drescher)
- Schemas are predictive if a context is
satisfied, and the schemas action is taken, then
a certain result is expected. - s??µa form, figure, appearance (Liddel Scott)
13An example Buckle schema
- One, two, buckle my shoe
- A sequence of 4 things where the penultimate
thing is more energetic than the 2 preceding
things, and which stops at the 4th thing. (In
Jj-speak slams) - Buckle is about the shape of excitation and
refraction - Some simple examples
14Buckle is also a form
15Buckles make nice themes
- Bach, violin concerto in a mi.
16Buckles can be used recursively
17Buckles can be specialized
18Shapes can be algebraically typed
- Obviously, there is a limit to the number of
shapes we want to explicitly name - An algebraic description system is needed.
19Buckles are important for analysis
- Buckles other high-level rhythmic shapes are
part of an overall strategy to discover metrical
(submetrical/hypermetrical) chains. - No current method exists for detecting metrical
changes - Without top-down schemas, metrical analysis in
complex music is hopeless. - Without metrical analysis, it is impossible to
make valid inferences about what kind of
structure a listener may be aware of
20Buckles are interesting
- internal use of figure-ground effect helps
provides a certain kind of Prägnanz (
goodness) - suggests our experience of the physical world.
Its like a batter winding up and letting go a
burst of energy that connects with the ball,
making a grand slam. - seems more rooted in brain adaptation to physical
reality (Shepherd) than to styles probably can
be found in nearly all music, including
avant-garde music. - connects to all situations where penultimate
object maximizes energy/excitation is absorbed
in a refractory object where the music comes to a
halt buckle is a kinematic shape.
21Kinematic Schemas
- Patterns of motion that tell us something about
the discharge of energy - Describes situation that can be occur at many
different levels - Energy schemas are needed if we want to calculate
how one shape influences the energy of the next.
22How Jack uses this
- Jack constructs variations that are based on an
analysis of shape - Kinds of variation specific to buckleslam make
the buckle more or less intense discover what
has already been done in parallel situations
create a new pattern - The new pattern could be derived from an old
pattern
23Constructing simple variations of folksongs using
pattern analysis
- Vary a few notes in a way that is sensible
- Vary the rhythm in a way that intensifies the
piece - Maintain the overall shape of the piece
- Construct far-ranging variations that are
interestingly related to the original
24Simple patterns are everywhere in music
- Pattern of orientation from 3 to 1
- Up, Down, Up, Down, Up, Down, Down, Down
- ABABAAAB
- The pattern is very close to a canonical pattern
-- alternation. - It can be viewed as buckle.
- Patterns of this kind are childrens games.
- There are many other patterns in this piece.
- Music packs high-dimensional childrens games
into an explosive space of illusory motion.
25The pattern of rhythm
- Doing exact comparison, measure for measure, gets
us somewhere with very simple music, but
generally this gets us nowhere. - Rhythms can be similar to some degree Rosenkranz
can be simplified, revealing ABABABAC, where B
is a simple variation of B.
26Rhythms can be expressed as patterns of ordered
sets
- A contains B, C and D.
- B contains D.
- This containment relation makes it possible to
express one rhythm in terms of another - We can reduce the piece to just 2 different
rhythms slam. - We can easily force very many folksongs into
patterns of just 2 rhythms. - This is called binary decomposition.
27Binary decomposition of rhythm
- Idea represent piece as variations of at most
two different rhythms, which may or may not be
subsets of one another. - Algorithm
- take intersection of all rhythms. This is
rhythm_0 at level 0. - For this level and all subsequent levels, find
the variant that describes a maximal subset of
rhythm_0. This is rhythm_1. - Produce a pattern of 0s and 1s, where 0 is
rhythm_0 and 1 is rhythm_1 - Construct a tree with this pattern at top.
Construct nodes at level n by recursing, using
rhythm_0 rhythm_1 from previous level.
28The decomposition tree shows childrens game
patterns
-
- tree
- pat 1 0 1 0 1 1 1
- rhythm_0 1440 480
- rhythm_1 240 240 480 480 480
- sub_0 None
- sub_1
- Some
- pat 1 1 1 0 1
- rhythm_0 240 240 480 480 480
- rhythm_1 240 240 480 240 240 480
- sub_0 None
- sub_1 None
29Using the tree, the piece can be rewritten in a
simpler way
- the rhythm of the entire piece can be viewed as a
variation of a dotted half a quarter. By adding
in rhythm_1 we can see the entire piece as an
alternation of just 2 rhythms. Below that, sub_1
pattern shows in what way rhythm_1 is varied on
the next level.
30Interesting result
- a huge percentage (gt 80) of German folksongs
decompose into binary patterns of a cycling
period generally of two measures. That is, there
is a recurrent subrhythm that runs through the
entire composition. - Subjectively, subrhythm alone is musically
meaningful. - Subjectively, the addition of rhythm_1 results in
an excellent melodic approximation of a large
percentage of all songs examined. - This would suggest that binary decomposition is
related to the process of music perception as
it were, accounted for in the composition of
music.
31Decomposition helps structure a variation
- Algorithm was used to rewrite melodies generated
by Melisma (Temperley) to good effect - Eg, by removing unique nodes with no children we
force a rhythm to conform to a rhythm that exists
somewhere else in the tree. The piece
automatically takes on more structure than before.
32Generalizing binary decomposition
- Reconsider the orientation analysis of Happy
Birthday
It is much more complex to look at 2 patterns
simultaneously than at one. Method collect
patterns of features For some set of features,
attempt to unify by forcing everything into the
best pattern.
33Implied objects a feature decomposition algorithm
- Rhythm has an inclusion relation.
- So does pitch Pitch-gtInterval-gtOrientation.
- Can generalize Buckles are included in the
class of rhythms that can be divided into 4 (ie
R4). - That is, included features can be schemas.
- Main idea some patterns include other patterns.
- Construct chains of binary patterns, such that
each chain has a 1 whenever the preceding chain
has a 1 in that position.
These represent patterns of features that have
been extracted from some music. The implies chain
means that it is possible to construct an object
that has nested constancies which lie in some
pattern.
34Implied objects in Happy Birthday-- one of 8
decompositions
- Node
- (Several
- (Interval,
- (T4 1 0 1 0 0 0 0 0 0 1,
- 0 2.01.000 D5/62 480 0 0
- 1 2.02.000 C5/60 480 0 0))
- (Pitch,
- (X6 1 0 1 0 0 0 0 0 0 1,
- 0 2.01.000 D5/62 480 0 0
- 1 2.02.000 C5/60 480 0 0)),
- Node
- (One (Interval,
- (X2 1 0 1 0 0 1 0 0 0,
- 0 2.01.000 D5/62 480 0 0)),
- Node
- (One (Ori, (Nb orientation extends to
next note, not seen here.) - (T0 1 0 1 0 0 1 1 0 0
1, - 0 2.01.000 D5/62 480 0 0
- 1 2.02.000 C5/60 480 0
0)),
35Patterns of included features line up
hierarchically
36Simplifying (?) Happy Birthday
- Just one step away from being a duple
- Preserves a set of features instepdown,
contour. - The tune is still recognizable
- Conscionable as an underlying canonical melody
- We can evaluate the kinds of variations that
transform this back to its original form. - The tree reveals patterns of variations there is
a complex metalevel to be considered. - (In general, pattern analysis always creates a
new pattern) - The results can be used recursively. (eg, the
high b-flat creates a new pattern in register it
could be registrally simplified etc.) - Provides an important compositional methodology.
- Proposes that listening somehow or other implies
recomposition.
37In sum
- Using ideas like schemas, patterned shapes,
binary reduction, implied objects Jill provides
Jack with information about what is happening in
the music. - Jack Jill use many other theorizations and
algorithms not discussed - System is more like computer vision than like a
grammar parser