Choice modelling -and example - PowerPoint PPT Presentation

About This Presentation
Title:

Choice modelling -and example

Description:

The variable T denote 1= choice, 2 = no choice. The resulting doubling ... to obtain the correct' model ... model t*t(2) = CsD Mld Prf FC Pam. PR_CsD PR_Mld ... – PowerPoint PPT presentation

Number of Views:30
Avg rating:3.0/5.0
Slides: 24
Provided by: jeffbr
Category:

less

Transcript and Presenter's Notes

Title: Choice modelling -and example


1
Choice modelling -and example
2
Background
  • Bonlac changing processed cheese and natural
    cheddar offering from Bega to Perfect Cheese
  • Previous research has
  • Explored an appropriate positioning for Perfect
    Cheese
  • Identified the optimal pack design
  • Further research is required to
  • Understand market response to the new range of
    Perfect Cheese in terms of
  • Price sensitivity
  • Market share potential
  • Cannibalisation effects
  • In addition, feedback on sensory performance of
    Perfect Cheese products relative to competitors,
    in order to support positioning platform ( not
    discussed today)

3
Pricing Objectives
  • To understand the impact of launching of Perfect
    in the Processed Cheese and Light Cheddar Block
    markets
  • Understanding initial impact (pre-trial)
  • Understand longer term impact (post-trial)
  • Understand the price sensitivity of each user
    group

4
Sensory Objectives
  • To evaluate the Perfect cheese slice and block
    products relative to competitive offerings in
    terms of
  • Acceptability (unbranded vs branded)
  • Sensory profiles
  • Relative to consumer ideals
  • Purchase intentions
  • Ability to support brand positioning expectations

5
Method
  • Central location test at Takapuna

6
Sample Population
  • N30 each of
  • Light Slice users
  • Super Light Slice users
  • Cheddar Slice users
  • Reduced Fat Cheddar Block users
  • Sample population
  • Females MHS, 20-65 years
  • Mix of household types (mainly families with
    kids)

7
Pricing Methodology
  • 15 shelves - pre/post presented to each of 30
    people in 4 user groups
  • Light Slices
  • Super Light Slices
  • Cheddar Slices
  • Light Cheddar Block
  • In each shelf range of prices consumers get to
    choose only one
  • Imitates shopping experience
  • Idealised situations (100 awareness of Perfect)
  • House-brands included

8
Introduction
9
( 4 of the 15 scenarios)
10
Whoa there! - How did we get to this conclusion?
  • 3 brands of interest Mainland/Chesdale and
    Perfect
  • The other 2, Pams and First Choice area at
    fixed, lower prices, prices
  • Decided to go with 3 price (low 1.99/medium
    2.29 /high 2.59) points/brand
  • Why?
  • Therefore we have 33 27 possible combinations
  • Decided to choose a sample of 15 to reduce
    respondent fatigue and to ensure we could measure
    all 2 order interaction effects
  • eg does a high price of Chesdale result in
    different pricing response for Perfect than if it
    were a low price
  • This phenomenon is quite common so needs to be
    taken into account

11
The design
Discuss
12
The data - raw
13
The data - how its needed for proc Phreg in SAS
14
Some points
  • Note that we have decided to mode/post data
    together
  • Not how the data is agrregated now
  • Compare this to what we have
  • Preprice 1

  • Cumulative Cumulative
  • PRE1
    Frequency Percent Frequency Percent

  • Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’Æ’
    Æ’Æ’Æ’Æ’Æ’Æ’Æ’
  • 1
    8 26.67 8 26.67
  • 2
    7 23.33 15 50.00
  • 3
    1 3.33 16 53.33
  • 4
    12 40.00 28 93.33
  • 5
    2 6.67 30 100.00

  • Preprice 2

  • Cumulative Cumulative
  • PRE2
    Frequency Percent Frequency Percent

15
Some Points
  • The variable T denote 1 choice, 2 no choice
  • The resulting doubling up of all rows
  • The variable SET represents the appropriate
    scenario
  • For each scenario there are 10 52 rows
  • Variables like CSD_MLD represents Chesdales
    effect on effect Mainland and so is in the
    relevant rows for Mainland but is Chesdales
    price
  • Remind me to give you a Splus function called
    SAS.DCM.FORMAT that helps format the appropriate
    design matrix for this data

16
Some more code
  • data temp
  • set hold.cslmodel
  • PR_Mld2 PR_Mld2
  • PR_Prf2 PR_Prf2
  • PR_Anc2 PR_Anc2
  • PR_FC2 PR_FC2
  • PR_Pam2 PR_Pam2
  • DMld POSTMld
  • DPrf POSTPrf
  • DAnc POSTAnc
  • Dpam POSTpam
  • Dfc POSTFC
  • DPR_Mld POSTPR_Mld
  • DPR_Prf POSTPR_Prf
  • DPR_Anc POSTPR_Anc
  • DPR_Pam POSTPR_Pam
  • DPR_FC POSTPR_FC
  • .
  • .

17
Analysing the data
  • Saving this data
  • data hold.cslmodel
  • set temp
  • run
  • Now we are ready to start finding the correct
    model
  • trial and error to obtain the correct model
  • proc phreg data hold.cslmodel outest betas
    nosummary
  • strata set
  • model tt(2)
  • CsD Mld Prf FC Pam
  • PR_CsD PR_Mld PR_Prf PR_FC PR_pam
  • PR_CsD2 PR_Mld2 PR_FC2 PR_pam2
  • DCsD DMld DPrf Dpam Dfc
  • DPR_CsD DPR_Mld DPR_Prf DPR_FC DPR_Pam
  • DPR_CsD2 DPR_Mld2 DPR_Prf2 DPR_FC2 DPR_pam2
  • DCsD_Mld DCsD_Prf DCsD_FC DCsD_Pam
  • DMld_CsD DMld_Prf DMld_FC DMld_Pam

18
Analysing the data
  • The final model
  • proc phreg data hold.cslmodel outest betas
    nosummary
  • strata set
  • model tt(2)
  • CsD Mld Prf FC Pam
  • PR_CsD PR_Mld PR_Prf PR_FC PR_pam
  • PR_CsD2 PR_Mld2 PR_FC2 PR_pam2
  • DPrf
  • DCsD_Prf
  • /ties breslow
  • freq freq
  • run

19
Analysing the data
  • Output
  • Analysis of Maximum Likelihood Estimates

  • Parameter Standard
    Hazard
  • Variable DF
    Estimate Error Chi-Square Pr gt
    ChiSq Ratio
  • CSD 1
    62.03446 10.46407 35.1451
    lt.0001 8.734E26
  • MLD 1
    53.51747 11.68024 20.9936
    lt.0001 1.747E23
  • PRF 1
    12.41570 1.09299 129.0359
    lt.0001 246643.1
  • FC 1
    1.15688 0.16214 50.9094 lt.0001
    3.180
  • PAM 0
    0 . . .
    .
  • PR_CSD 1
    -48.72340 9.27818 27.5772
    lt.0001 0.000
  • PR_MLD 1
    -41.00351 10.42944 15.4568
    lt.0001 0.000
  • PR_PRF 1
    -5.23230 0.49984 109.5801
    lt.0001 0.005
  • PR_FC 0
    0 . . .
    .
  • PR_PAM 0
    0 . . .
    .
  • PR_CSD2 1
    9.65004 2.03784 22.4241 lt.0001
    15522.40
  • PR_MLD2 1
    7.85671 2.30708 11.5972 0.0007
    2583.017
  • PR_FC2 0
    0 . . .
    .

20
Turning this into something meaningfull
21
Presenting the data
22
Presenting the data
23
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com