Cosmology with SNAP - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Cosmology with SNAP

Description:

G. Aldering, C. Bebek, W. Carithers, S. Deustua, W. Edwards, J. Frogel, D. Groom, ... Discoveries 3.8 mag before max. Spectroscopy with S/N=10 at 15 bins ... – PowerPoint PPT presentation

Number of Views:54
Avg rating:3.0/5.0
Slides: 15
Provided by: michae722
Learn more at: https://snap.lbl.gov
Category:
Tags: snap | cosmology

less

Transcript and Presenter's Notes

Title: Cosmology with SNAP


1
Cosmology with SNAP
Eric Linder Berkeley Lab
G. Aldering, C. Bebek, W. Carithers, S. Deustua,
W. Edwards, J. Frogel, D. Groom, S. Holland, D.
Huterer, D. Kasen, R. Knop, R. Lafever, M. Levi,
E. Linder, S. Loken, P. Nugent, S. Perlmutter, K.
Robinson (Lawrence Berkeley National
Laboratory) E. Commins, D. Curtis, G. Goldhaber,
J. R. Graham, S. Harris, P. Harvey, H. Heetderks,
A. Kim, M. Lampton, R. Lin, D. Pankow, C.
Pennypacker, A. Spadafora, G. F. Smoot (UC
Berkeley) C. Akerlof, D. Amidei, G. Bernstein, M.
Campbell, D. Levin, T. McKay, S. McKee, M.
Schubnell, G. Tarle , A. Tomasch (U. Michigan)
P. Astier, J.F. Genat, D. Hardin, J.- M. Levy,
R. Pain, K. Schamahneche (IN2P3) A. Baden, J.
Goodman, G. Sullivan (U.Maryland) R. Ellis, A.
Refregier (CalTech) A. Fruchter (STScI) L.
Bergstrom, A. Goobar (U. Stockholm) C. Lidman
(ESO) J. Rich (CEA/DAPNIA) A. Mourao (Inst.
Superior Tecnico,Lisbon)
2
Probing Dark Energy Models
3
Supernova Requirements
4
From Science Goalsto Project Design
Science
  • Measure ?M and ?
  • Measure w and w (z)

Systematics Requirements
Statistical Requirements
  • Identified and proposed systematics
  • Measurements to eliminate / bound each one to
    /0.02 mag
  • Sufficient (2000) numbers of SNe Ia
  • distributed in redshift
  • out to z lt 1.7

Data Set Requirements
  • Discoveries 3.8 mag before max
  • Spectroscopy with S/N10 at 15 Å bins
  • Near-IR spectroscopy to 1.7 ?m


Satellite / Instrumentation Requirements
  • 2-meter mirror Derived requirements
  • 1-square degree imager High Earth orbit
  • Spectrograph 50 Mb/sec bandwidth (0.35 ?m
    to 1.7 ?m)


5
Mission Design
  • SNAP a simple dedicated experiment to study the
    dark energy
  • Dedicated instrument, essentially no moving parts
  • Mirror 2 meter aperture sensitive to light from
    distant SN
  • Photometry with 1x 1 billion pixel mosaic
    camera, high-resistivity, rad-tolerant p-type
    CCDs and, HgCdTe arrays. (0.35-1.7 mm)
  • Integral field optical and IR spectroscopy
    0.35-1.7 mm, 2x2 FOV

6
GigaCAM
  • GigaCAM, a one billion pixel array
  • Approximately 1 billion pixels
  • 140 Large format CCD detectors required, 30
    HgCdTe Detectors
  • Larger than SDSS camera, smaller than H.E.P.
    Vertex Detector (1 m2)
  • Approx. 5 times size of FAME (MiDEX)

7
Focal Plane Layout with Fixed Filters
8
Step and Stare and Rotation
9
High-Resistivity CCDs
  • New kind of CCD developed at LBNL
  • Better overall response than more costly
    thinned devices in use
  • High-purity silicon has better radiation
    tolerance for space applications
  • The CCDs can be abutted on all four sides
    enabling very large mosaic arrays
  • Measured Quantum Efficiency at Lick Observatory
    (R. Stover)

10
LBNL CCDs at NOAO
Science studies to date at NOAO using LBNL CCDs
  1. Near-earth asteroids
  2. Seyfert galaxy black holes
  3. LBNL Supernova cosmology

Blue is H-alpha Green is SIII 9532Å Red is HeII
10124Å.
Cover picture taken at WIYN 3.5m with LBNL 2048
x 2048 CCD (Dumbbell Nebula, NGC 6853)
See September 2001 newsletter at
http//www.noao.edu
11
Integral Field Unit Spectrograph Design
SNAP Design
Camera
Detector
Prism
Collimator
Slit Plane
12
Lightcurves and Spectra from SNAP
  • Goddard/Integrated Mission Design
  • Center study in June 2001
  • no mission tallpoles
  • Goddard/Instrument Synthesis and
  • Analysis Lab. study in Nov. 2001
  • no technology tallpoles

13
Science Reach
  • Key Cosmological Studies
  • Type II supernova
  • Weak lensing
  • Strong lensing
  • Galaxy clustering
  • Structure evolution
  • Star formation/reionization

14
A Resource for the Science Community
  • SNAP main survey will be 4000x larger (and as
    deep)
  • than the biggest HST deep survey, the ACS
    survey
  • Complementary to NGST target selection for rare
    objects
  • Can survey 1000 sq. deg. in a year to I29 or
    J28 (AB mag)
  • Archive data distributed
  • Guest Survey Program
  • Whole sky can be observed every few months
  • Galaxy populations and morphology to coadded
    m31
  • Quasars to redshift 10
  • Epoch of reionization through Gunn-Peterson
    effect
  • Lensing projects
  • Mass selected cluster catalogs
  • Evolution of galaxy-mass correlation function
Write a Comment
User Comments (0)
About PowerShow.com