Title: Introduction to Limits
1Introduction to Limits
- Numerical, Graphical, Algebraic
- Marlow Dorrough
- University of Mississippi
2 Immediate Objective to understand an
idea
3Long-Range Objective to express the idea in
algebraic language
4Super Long-Range Objective to
understand and enjoy the vast tapestry of ideas
5Ready?
6(No Transcript)
7(No Transcript)
8(No Transcript)
9(No Transcript)
10(No Transcript)
11(No Transcript)
12(No Transcript)
13(No Transcript)
14If a limit involved no more than plugging a
number into an equation, we could hardly call it
the central idea that distinguishes calculus
from algebra and trigonometry (p.73, Thomas
Calculus). So there must be more to the story
15(No Transcript)
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30(No Transcript)
31Piecewise-defined functions
32(No Transcript)
33(No Transcript)
34(No Transcript)
35(No Transcript)
36(No Transcript)
37(No Transcript)
38Infinite Limits
39(No Transcript)
40(No Transcript)
41(No Transcript)
42Dont be confused about vertical asymptotes -
they dont occur just because the denominator is
zero. The limit must actually be infinite.
Consider two earlier examples with no vertical
asymptotic behavior
43Limits at Infinity
44(No Transcript)
45(No Transcript)
46(No Transcript)
47(No Transcript)
48(No Transcript)
49(No Transcript)
50(No Transcript)
51(No Transcript)
52(No Transcript)
53(No Transcript)
54(No Transcript)
55(No Transcript)