Pr - PowerPoint PPT Presentation

About This Presentation
Title:

Pr

Description:

Stable and Tuneable. Laser Plasma Accelerators. J. ... JETI. 47. 9. 0,32. 40. 50. 4,6. Hsieh. PRL (2006) IAMS. 55. 336. 40. 2,6. Hosokai. PRE (2006) U. Tokyo ... – PowerPoint PPT presentation

Number of Views:20
Avg rating:3.0/5.0
Slides: 21
Provided by: lnfI
Category:
Tags: jeti

less

Transcript and Presenter's Notes

Title: Pr


1
Stable and Tuneable Laser Plasma Accelerators
J. Faure, Y. Glinec, A. Lifschitz, A. Norlin, C.
Réchatin, V.Malka Laboratoire dOptique
Appliquée ENSTA-Ecole Polytechnique, CNRS 91761
Palaiseau, FRANCE
Partially supported by CARE/PHIN FP6 project
LOA
INFN, Frascati, November 16 (2006)
2
Summary
Part 1 Laser plasma accelerator
motivation Part 2 Production of monoenergetic
electron beam Part 3 New scheme of injection
toward a stable, tuneable and quasi monoenergetic
electron beam. Part 4 Conclusion and
perspectives
LOA
INFN, Frascati, November 16 (2006)
3
Classical accelerator limitations
E-field max few 10 MeV /meter (Breakdown)
RgtRmin Synchrotron radiation
Courtesy of W. Mori L. da Silva
1 m
RF cavity
LOA
INFN, Frascati, November 16 (2006)
4
Laser plasma injector
Scheme of principle
Experimental set up
LOA
INFN, Frascati, November 16 (2006)
5
Energy distribution improvements The Bubble
regime
Charge in the peak 200-300 pC
Experiment
PIC
At LOA J. Faure et al. Nature (2004)
LOA
INFN, Frascati, November 16 (2006)
6
Quasi-monoenergetic beamsreported in the
litterature
Intensity
tL/Tp
Remark
Energy
dE/E
Charge
Ne
Article
Name
Lab
/cm

x10
W/cm

pC
x1018
18
2
3
MeV

Mangles
Nature (2004)
RAL
73
6
22
20
2,5
1,6
Geddes
Nature (2004)
L'OASIS
86
2
320
19
11
2,2
Channel
Faure
Nature (2004)
LOA
170
25
500
6
3
0,7
Hidding
PRL (2006)
JETI
47
9
0,32
40
50
4,6
Hsieh
PRL (2006)
IAMS
55
336
40
2,6
Hosokai
PRE (2006)
U. Tokyo
11,5
10
10
80
22
3,0
Preplasma
Miura
APL (2005)
AIST
7
20
432E-6
130
5
5,1
Hafz
PRE (2006)
KERI
4,3
93
200
28
1
33,4
Mori
ArXiv (2006)
JAERI
20
24
0,8
50
0,9
4,5
Mangles
PRL (2006)
Lund LC
150
20
20
5
1,4
Several groups have obtained quasi monoenergetic
e beam but at higher density (tLgttp)
LOA
INFN, Frascati, November 16 (2006)
7
GeV electron beams from a  centimetre-scale 
accelerator
310-µm-diameter channel capillary P 40 TW
density 4.31018 cm-3.
Leemans et al., Nature Physics, september 2006
LOA
INFN, Frascati, November 16 (2006)
8
Laser plasma injector GeV electron beams
Courtesy of UCLA Golp groups
 
LOA
INFN, Frascati, November 16 (2006)
9
Laser plasma injector
  • good efficiency Ee-beam/Elaser ? 10
  • simple device
  • with channel GeV range is obtained1 with
    moderate laser power
  • But since the efficiency is conserved a
    compromise between charge and
  • energy must be found
  • Stability not yet demonstrated in progress
  • - Energy spread still too large for some
    applications dE/E ? few

 
Courtesy of S. Hoocker or F. S. Tzung PRL (2004
LOA
INFN, Frascati, November 16 (2006)
10
Controlling the injection
pump
injection
Counter-propagating geometry
Ponderomotive force of beatwave Fp 2a0a1/?0
(a0 et a1 can be weak)y Boost electrons
locally and injects them y INJECTION IS LOCAL IN
FIRST BUCKET y
E. Esarey et al, PRL 79, 2682 (1997), G. Fubiani
et al. (PRE 2004)
LOA
INFN, Frascati, November 16 (2006)
11
Experimental set-up
to shadowgraphy diagnostic
electron spectrometer
Probe beam
LANEX
Gas jet
B Field
Injection beam
Pump beam
12
LOA
INFN, Frascati, November 16 (2006)
13
From self-injection to external injection
ne1.251019 cm-3
LOA
INFN, Frascati, November 16 (2006)
14
Optical injection by colliding pulses leads to
stable monoenergetic beams
LOA
INFN, Frascati, November 16 (2006)
15
Monoenergetic bunch comes from colliding pulses
polarization test
Parallel polarization
Crossed polarization
LOA
INFN, Frascati, November 16 (2006)
16
Controlling the bunch energy by controlling the
acceleration length
  • By changing delay between pulses
  • Change collision point
  • Change effective acceleration length
  • Tune bunch energy

Pump beam
Injection beam
2 mm
Gas jet
LOA
INFN, Frascati, November 16 (2006)
17
Tunable monoenergetic bunches
LOA
INFN, Frascati, November 16 (2006)
18
Tunable monoenergetic electrons bunches
190 MeV gain in 700 µm E270 GV/m Compare with
Emaxmcwp/e250 GV/m at ne7.51018 cm-3
LOA
INFN, Frascati, November 16 (2006)
19
Conclusions / perspectives
  • SUMMARY
  • Optical injection by colliding pulse it works !
  • Monoenergetic beams trapped in first bucket
  • Enhances dramatically stability
  • Energy is tunable 15-300 MeV
  • Charge up to 80 pC in monoenergetic bunch
  • dE/E down to 5 (spectrometer resolution), dE
    10-20 MeV
  • Duration shorter than 10 fs.
  • PERSPECTIVES Q
  • Combine with waveguide tunable up to few GeVs
    with dE/E 1
  • Design future accelerators
  • Model the problem for further optimization
    higher charge
  • Stable source
  • extremely important
  • accelerator development (laser based accelerator
    design)
  • light source development for XFEL
  • applications (chemistry, radiotherapy, material
    science)

LOA
INFN, Frascati, November 16 (2006)
20
LOA/CARE_PHIN List of publications in refereed
journals
16 Controlled injection and acceleration of
electrons in plasma wakefields by colliding laser
pulses J. Faure, C. Rechatin, A. Norlin, A. F.
Lifschitz, Y. Glinec, V. Malka, Accepted in
Nature (2006) 15 Staged concept of laser plasma
acceleration toward multi GeV electrons beams V.
Malka, J. Faure, Y. Glinec, A. Lifschitz, to be
published to PR -STA 14 Absolute calibration for
a broadrange single shot electron spectrometer Y.
Glinec, J. Faure, A. Guemnie-Tafo, V. Malka, et
al., RS 2006I. 13 Ultra short laser pulses and
ultra short electron bunches generated in
relativistic laser plasma interaction. J. Faure,
Y. Glinec, G. Gallot, and V. Malka, Phys. Plasmas
13, 056706 (2006). 12 Design of a compact GeV
Laser Plasma Accelerator V.Malka, A. F.
Lifschitz, J. Faure, Y. Glinec, NIM A 561,
p310-131 (2006) 11 Wakefield acceleration of low
energy electron bunches in the weakly nonlinera
regime A. F. Lifschitz, J. Faure, Y. Glinec, V.
Malka, NIM A 561, p314-319 (2006) 10 Proposed
Scheme for Compact GeV Laser Plasma
Accelerator A. Lifschitz, J. Faure, Y. Glinec, P.
Mora, and V. Malka, Laser and Particle Beams 24,
255-259 (2006) 9 Radiotherapy with laser-plasma
accelerators application of an experimental
quasi-monoenergetic electron beam Y. Glinec, J.
Faure, T. Fuchs, H. Szymanowski, U. Oelfke, and
V. Malka, Med. Phys. 33, (1) 155-162 (2006) 8
Laser-plasma accelerator status and
perspectives V. Malka, J. Faure, Y. Glinec, A.F.
Lifschitz, Royal Society Philosophical
Transactions A, 364, 1840, 601-610 (2006) 7
Observation of laser pulse self-compression in
nonlinear plasma waves J. Faure, Y. Glinec, J.
Santos, V. Malka, S. Kiselev, A. Pukhov, and T.
Hosokai, Phys. Rev. Lett. 95, 205003 (2005). 6
Laser-plasma accelerators A new tool for
science and for society V. Malka, J. Faure, Y.
Glinec, and A.F. Lifschitz, Plasmas Physics and
Controlled Fusion 47 (2005) B481-B490. 5 GeV
Wakefield acceleration of low energy electron
bunches using Petawatt lasers A.F. Lifschitz, J.
Faure, V. Malka, and P. Mora, Phys. of Plasmas
12, 0931404 (2005). 4 Generation of
quasi-monoenergetic electron beams using
ultrashort and ultraintense laser pulses Y.
Glinec, J. Faure, A. Pukhov, S. Gordiendko, S.
Kiselev, V. Malka, Laser and Particle beams 23,
161-166 (2005). 3 Monoenergetic electron beam
optimisation in the bubble regime V. Malka, J.
Faure, Y. Glinec, A. Pukhov, J.P. Rousseau, Phys.
of Plasmas 12, 056702 (2005). 2 High-resolution
-ray radiography produced by a laser-plasma
driven electron source Y. Glinec, J. Faure, L. Le
Dain, et al., Phys. Rev. Lett.94 (2005). 1 A
laser-plasma accelerator producing monoenergetic
electron beams J. Faure, Y. Glinec, A. Pukhov, et
al., Nature 431, 541, 30 septembre (2004).
INFN, Frascati, November 15 (2006)
Write a Comment
User Comments (0)
About PowerShow.com