An Object-Oriented Internet-based Framework for Chip Package Thermal PowerPoint PPT Presentation

presentation player overlay
About This Presentation
Transcript and Presenter's Notes

Title: An Object-Oriented Internet-based Framework for Chip Package Thermal


1
An Object-Oriented Internet-based Framework for
Chip Package Thermal Stress SimulationIPACK200
1-15810
InterPACK'01 The Pacific Rim/ASME International
Electronic Packaging Technical Conference and
Exhibition July 813, 2001, Kauai, Hawaii, USA
1Russell S. Peak, 2Ryuichi Matsuki, 1Miyako W.
Wilson, 1Donald Koo,1Andrew J. Scholand, 2Yukari
Hatcho, 1Sai Zeng
  • Shinko Electric Industries Co., Ltd. 2
  • Package Design Center
  • Nagano, Japan
  • www.shinko.co.jp

Georgia Tech 1 Engineering Information Systems
Lab eislab.gatech.edu
2
Phase 1 Summary - Shinko Project
3
Chip Package Products Shinko
Quad Flat Packs (QFPs)
Plastic Ball Grid Array (PBGA) Packages
4
Traditional VTMB FEA Model CreationManually
Intensive 6-12 hours
VTMB variable topology multi-body
FEA Model Planning Sketches - EBGA 600 Chip
Package
5
Outline
  • Analysis Integration Background
  • CAD-CAE Interoperability Research Development
  • Chip Package Analysis Tool Overview
  • On Automating Variable Topology Multi-Body (VTMB)
    FEA Problems
  • Summary

6
X-Analysis Integration TechniquesX Design,
Mfg., Sustainment,
a. Multi-Representation Architecture (MRA)
b. Explicit Design-Analysis Associativity
c. Analysis Module Creation Methodology
7
An Introduction to X-Analysis Integration (XAI)
Short Course Outline
  • Part 1 Constrained Objects (COBs) Primer
  • Nomenclature
  • Part 2 Multi-Representation Architecture (MRA)
    Primer
  • Analysis Integration Challenges
  • Overview of COB-based XAI
  • Part 3 Example Applications
  • Airframe Structural Analysis (Boeing)
  • Circuit Board Thermomechanical Analysis (DoD
    ProAM JPL/NASA)
  • Chip Package Thermal Analysis (Shinko)
  • Summary
  • Part 4 Advanced Topics Current Research

8
Outline
  • Analysis Integration Background
  • CAD-CAE Interoperability Research Development
  • Chip Package Analysis Tool Overview
  • On Automating Variable Topology Multi-Body (VTMB)
    FEA Problems
  • Summary

9
Tool Usage Overview
Preliminary Design
Analysis Module Setup Usage
1
2b
Automated FEA Meshing Solution
3a
3b
Thermal Results
Documentation Assistance
2a
10
Flexible High Diversity Design-Analysis
Integration Electronic Packaging Examples Chip
Packages/Mounting Shinko Electric Project
Phase 1 (completed 9/00)
Analysis Modules (CBAMs) of Diverse Behavior
Fidelity
Modular, Reusable Template Libraries
Design Tools
Prelim/APM Design Tool
Analysis Tools
XaiTools ChipPackage
XaiTools ChipPackage
General Math Mathematica
FEAAnsys
Thermal Resistance
Analyzable Product Model
3D
XaiTools
PWB DB
Materials DB
ThermalStress
EBGA, PBGA, QFP
Basic 3D
Basic Documentation Automation
AuthoringMS Excel
Demonstration module
11
Using Internet/Intranet-based Analysis
SolversThick Client Architecture
Self-Serve Engineering Service Bureau (ESB)
Users
Client PCs
Server Machines
June99-Present EIS Lab - Regular internal
use U-Engineer.com - Demo usage - US
- Japan Nov.00-Present Electronics
Co. - Began production usage (dept.
Intranet) Future Company Intranet
and/or U-Engineer.com (commercial) - Other
solvers
Thick Client
CORBA Daemon
Iona orbixdj
XaiTools
CORBA IIOP
CORBA Servers
Internet
XaiTools Ansys Solver Server
XaiTools Ansys Solver Server
XaiTools Math. Solver Server
XaiTools Ansys Solver Server
FEA Solvers
Ansys
Internet/Intranet
...
Math Solvers
Mathematica
12
APM Design ToolPreliminary Design of Packages -
PBGA Screens
APM analyzable product model
13
Example Chip Package Idealizations (PBGA)
Idealization for solder-joint/thermal ball
Idealization for thermal via
Courtesy of Shinko - see Koo, 2000
14
COB-based Analysis TemplateTypical Input Objects
for EBGA Thermal Resistance Module
COB constrained object
Customized Analysis Module Tool with idealized
package cross-section
Generic COB Browser with design and analysis
objects (attributes and relations)
15
COB-based Analysis TemplateTypical Highly
Automated Results
COB constrained object
Auto-Created FEA Inputs (for Mesh Model)
Analysis Module Tool
FEA Temperature Distribution
Thermal Resistance vs. Air Flow Velocity
16
Test Cases - ShinkoAuto-Generated FEA Mesh Model
of PBGA 256 with Thermal Vias
FEA mesh model with strong inter-body
coupling 29 idealized bodies 10 idealized
materials 1 main pattern 3 sub patterns
Small Idealized Vias
Thin Copper Layers
17
Results Validation
Thermal resistance
(a) (b)
(c)
Good comparisons (a) simulation via VTMB
algorithm (in XCP) (b) simulation via
traditional manual approach (c) physical
measurements
18
Outline
  • Analysis Integration Background
  • CAD-CAE Interoperability Research Development
  • Chip Package Analysis Tool Overview
  • On Automating Variable Topology Multi-Body (VTMB)
    FEA Problems
  • Summary

19
Traditional VTMB FEA Model CreationManually
Intensive 6-12 hours
VTMB variable topology multi-body
FEA Model Planning Sketches - EBGA 600 Chip
Package
20
Variable Topology Multi-Body (VTMB) FEA Meshing
Challenges
Idealized Analytical Bodies
Decomposed FEA Geometry Models
Meshing Solving
Design Model
1a
1b
1
2
2
1c
3a
3b
3c
3
original
Labor-intensive chopping
1a
1b
1c
1
2
2
1d
1e
3
3a
3b
topology change (no body change)
1a
1b
1
2
1c
2
3
1d
3
4
4a
4b
4c
body change (includes topology change)
21
Product Information-Driven FEA MethodologyPurpose
of VTMB Methodology
VTMB Methodology
VTMB FEA Models
create algorithmij once
algorithmij
use algorithmij many times
Design Instances
Analysis Instances
Design Types i 1m
Analysis Types j 1n
for a given ij j?1n (not all design types
have all analysis types) e.g.) for i1(EBGA),
j1(thermal resistance) j2 (thermal stress)
for i2 (PWB), j1 (warpage)
VTMB variable topology multi-body
22
MethodologyScope of VTMB algorithmij for cbamij
VTMB algorithmij for cbamij Koo, 2000
Analysis Subsystems
Tamburini, 1999
Part Feature Assembly Structure
Pseudo-Analysis
Building Blocks
Context-Based
Analyzable Product Model
(pseudo-ABBs)
Analysis Model
Step 2
(CBAM)
Step 1a

Peak, 2001
Boundary Condition
Objects Discipline
Step 1b
Solution
Method Models
Conditions
boundary variables
(SMMs)
Analysis
Next-Higher
CBAMs
Context
Step 3
Behavior/Mode
Associativity
Objectives
F
Linkages,
allowable
Step 4
MoS

actual
23
Design Changes with Large Topology Impact
Example Variations PBGAs EBGAs
EBGA 600 with 2 Steps
PBGA 313 with Thermal Vias Thermal Balls
EBGA 325 with No Steps
2D partial views of 3D models
24
Design Change with Small Topology ImpactHeat
Spreader Size Variations - EBGA 600
Idealized Analytical Models
thin large
thick small
FEA Mesh Models
z-direction topology changes
2D partial views of 3D models
25
Test Cases - ShinkoAuto-Generated FEA Model QFP
PCDPH
FEA mesh model with strong inter-body
coupling 23 idealized bodies 9 idealized
materials 1 main pattern 3 sub patterns
26
Design Changes with Large Topology Impact
Example Variations QFPs
QFP 208 DPH HS/Tape
QFP 128 SL Die Pad
2D partial views of 3D models
27
Basic Stress Analysis Module ToolHighly
automated FEA model creation
PBGA 625
  • Re thermal model
  • Same APM (but different idealizations)
  • CORBA-based
  • solvers, etc.
  • Pattern-based
  • meshing
  • Adjustable mesh density

28
Multi-Fidelity IdealizationsMode-dependent
Idealized Geometries Same Dimension
Thermal Resistance
FEA Model
Idealized Geometry (3D)
Common Design Model
Thermal Stress
Idealized Geometry (3D)
FEA Model
29
Outline
  • Analysis Integration Background
  • CAD-CAE Interoperability Research Development
  • Chip Package Analysis Tool Overview
  • On Automating Variable Topology Multi-Body (VTMB)
    FEA Problems
  • Summary

30
Pilot Initial Production Usage ResultsProduct
Model-Driven Analysis
VTMB variable topology multi-body technique
Koo, 2000
  • Reduced FEA modeling time gt 101 (days/hours ?
    minutes)
  • Reduced simulation cycle gt 75

References 1 Shinko 5/00 (in Koo, 2000) 2
Shinko evaluation 10/12/00
  • Enables greater analysis intensity ? Better
    designs
  • Leverages XAI / CAD-CAE interoperability
    techniques
  • Objects, Internet/web services, ubiquitization
    methodology,

31
(No Transcript)
32
Summary of Tools and Services offered via
Georgia Tech Research Corp.http//eislab.gatech.e
du/
  • XaiTools FrameWork
  • General-purpose analysis integration toolkit
  • Product-Specific Toolkits
  • XaiTools PWA-B
  • XaiTools ChipPackage
  • U-Engineer.com
  • Internet-based engineering service bureau (ESB)
  • Self-serve automated analysis modules
    Full-serve consulting
  • Research, Development, and Consulting
  • Analysis integration optimization Short
    courses
  • Product-specific analysis module catalogs
  • Internet/Intranet-based ESB development
  • Knowledge-based engineering information
    technology
  • PDM, STEP, GenCAM, XML, UML, Java, CORBA,
    Internet,
  • CAD/CAE/CAM, parametric FEA, thermal mechanical
    analysis

33
For Further Information ...
  • EIS Lab web site http//eislab.gatech.edu/
  • Publications, project overviews, tools, etc.
  • See Publications ? DAI/XAI ? Suggested Starting
    Points X-Analysis Integration (XAI)
    Technology http//eislab.gatech.edu/pubs/reports/
    EL002/
  • XaiTools home page http//eislab.gatech.edu/tool
    s/XaiTools/
  • Pilot commercial ESB http//www.u-engineer.com/
  • Internet-based self-serve analysis
  • Analysis module catalog for electronic packaging
  • Highly automated front-ends to general FEA math
    tools

34
Nomenclature
Write a Comment
User Comments (0)
About PowerShow.com