Title: Current-free double-layer experiments
1Current-free double-layer experiments
- Christine Charles SP3 group
- Space Plasma and Plasma Processing Group
- Plasma Research Laboratory
- Research School of Physical Sciences
- The Australian National University
IPELS 2005 (Tromso)
2Introduction
- Electric Double Layer (DL)
-
- localized region within a plasma with a
potential drop - causes particle acceleration (ion beam, electron
beam) - where aurora, solar corona, pulsars,
extragalactic jets, - current-driven DLs and current-free electric DLs
- Current-Free electric Double Layer (CFDL)
-
- no imposed current or voltage as starting
condition - one plasma source only
- Hairapetian et al (1990), Sato et al (1992) and
Chan et al (1981) - Here description of recently discovered helicon
CFDL
3Low pressure expanding plasmas
4Under specific conditions, a current-free
electric DL can spontaneously form in the area of
plasma expansion downstream of a helicon source
Current-Free Double-Layer experiments
CHI KUNG, WOMBAT, Australian National University,
Australia MNX, Princeton, USA HELIX, University
of West-Virginia, USA HeliconLPTP
(Electronegative), Ecole Polytechnique, France In
progress MENJA (ECR), University of Tromso,
Norway
- Low pressure lt2 mTorr
- Geometric expansion
- Divergent magnetic field
- High source potentials
5Helicon Double-Layer (DL)
March 1999
6Movable energy analyser
Radial measure
Axial measure
20 mm
ni
Vp
7Current-free Double-Layer n Vp
Argon, 250 Watts, radial measure 90o 0.2 mTorr
with expanding field (Bz130 to 20 Gauss)
DL
DL
Source field 220 V.m-1 Potential drop 25 V Te
downstream8eV
8900
00
9Ion beam velocity and density
250 W, 0.3 mTorr, 130 G
00
900
10DL and no-DL experiment
Ion beam
DL case 800 W 0.3 mtorr 130 G source
No DL case 250 W 1.3 mtorr 40 G source
11Ion beam Axial distance
12 cm downstream of DL
24 cm downstream of DL
- Beam affected by collisions with background gas
(CE,EL) - Mean free paths at 0.3 mTorr
- lmfp 11 and 13 cm for 0.01 eV, 22 and 26 cm
for 20 eV
12Ion beam Radial distance
50 eV ion beam supersonic (10km.s-1) Low beam
divergence Abeam150 cm2
Local downstream plasma potential
( ion energy)
13Ion beam Time development
- Floating potential upstream of DL
- High source potentials
- DL formed during breakdown
A. Aanesland, C. Costa, C. Charles, A. Meige, O.
Sutherland, R.W. Boswell
Instability at 10kHz
No Instability
14Control parameters
DL control parameters magnetic field
Coil 1 2 to 6 A , Coil 2 6A
Coil 1,Coil 2
- Minimum Bz of 60 G (Coil1Coil2)
- High source potentials (Coil 1, Coil 2 6A)
- High ion beam density (Coil 2, Coil 16A)
- Forces plasma to choose DL solution in
Modelette?
15DL control parameters pressure
- Low pressure lt 2 mTorr
- High source potentials
- VDL seems to follow Te
- Agrees with Modelette
16Control parameters
DL control parameters geometry/scaling
WOMBAT D 20 cm L 50cm
- Source geometry
- Field configuration
- Geometric expansion
O. Sutherland, C. Charles, N. Plihon, R.W.
Boswell, Submitted to Phys. Rev. Lett. 2005
17Other diagnostics of CFDL
- Energy Analyser
- in CHI KUNG and WOMBAT
- Particle In Cell simulation
A. Meige, R.W. Boswell, C. Charles, M.M.
Turner, Phys. Plasmas 12, 052317 (2005)
A. Meige, R.W. Boswell, C. Charles, J.P. Boeuf,
G. Hagelaar, and M.M. Turner, IEEE Trans. Plasma
Science 33, 334 (2005)
Ion velocity (PIC, LIF)
- Laser Induced Fluorescence
- in MNX, CHI KUNG and Helix
X.Sun, A.M. Keese, C. Biliou, E.E. Scime, A.
Meige, C. Charles, R.W. Boswell, Phys. Rev. Lett.
2005
A.M. Keese, E.E. Scime, C. Charles, A. Meige,
R.W. Boswell, Phys. Plasmas 2005
18Control parameters
Other DL parameters
- Gas Ar, H2, O2, Xe
- RF Power capacitive or inductive coupling mode
? - What determines DL location ?
- Ion velocity into DL ?
- Role of downstream plasma ?
- Pumping speed from 50 to 700 l.s-1
- Develop Helicon Double Layer Thruster prototype
to be mounted on thrust balance and tested in
space simulation chamber 7000 l.s-1 at European
Space Agency
19The Helicon Double Layer Thruster prototype
DEST Innovation Access Grant "This project is
proudly sponsored by the International Science
Linkages programme established under the
Australian Government's innovation statement
Backing Australia's Ability" C. Charles, P.
Alexander, C. Costa, O. Sutherland, R.W.
Boswell Space Propulsion and Plasma Processing
Group,Plasma Research Laboratory, RSPhysSE, The
Australian National University A. Parfitt, J.
Kingwell Cooperative Research Centre for
Satellites Systems, Canberra R. Franzen, L.
Pfitzner AUSPACE, Canberra P. E. Frigot, J.
Gonzalez del Amo, G. Saccoccia European Space
Agency, ESTEC, The Netherlands
20Partners
http//sp3.anu.edu.au
21Design and Pre-tests at ANU
22Xe Double-Layer in HDLT at ANU
- HDLT prototype mounted on Chi Kungs diffusion
chamber - USE Heliac spare 2200 l.s-1 turbo pump (700
l.s-1 with Xenon) - Thermal tests, RF tests, RFEA tests
23Detachment from HDLT
- 2 D Single particle trajectories
- Cylindrical coordinates
- Magnetic field aligned double layer
- Field line calculation
- Lorentz force
- Curvature study (converges to zero)
- Detachment 12 cm downstream of DL
- Beam divergence lt 5 degres in Ar
F. Gesto, B. Blackwell, C. Charles, R.W. Boswell,
J. of Propulsion and Power 2005
24- HDLT Prototype Design Report
- HDLT Interface Control Document
- with
- 3 D Solidworks model of HDLT on thrust balance
in Hatch firing into Corona - Thermal model for HDLT in Corona
253 D model at AUSPACE
26HDLT Testing Campaign at ESA
27First HDLT plasma tests at ESA
April 28,2005
- Thermal study measurements (4 thermocouples)
and model - Helicon system operating under vacuum
- Non sealed gas injection
- Extended rf feedthroughs
- (measurements and model of matching network with
Spice)
28HDLT blue mode discovered at ESA
- HDLT prototype in Corona at ESA
- Pumping speed 7000 l/s for Xenon
- Downstream plasma generated by DL
- The plasma behaves differently
- New intense blue mode found
- DL not discerned with Faraday Cups
- Additional tests needed
29No neutraliser
A new candidate for ion heating in space plasmas?
- High source potential
- Low pressure lt 2mTorr
- Divergent magnetic field
- Geometric expansion
- DL formed during plasma breakdown
- Weak DL with flow of electrons over DL
- Pre-acceleration into DL
- Role of downstream plasma
- Extensive Experimental Data Base
- PIC simulation
- No Analytical work
- No Theory available
30Modeling of Current-free DL
Current-driven DL Abundant literature
Chan, Hershkowitz Payne, Physics Letters 83,
1981 Laboratory DLs with no external fields
(triple plasma device)
F.W. Perkins and Y.C. Sun, Phys. Rev. Lett. 1981,
Double layers without current
Hence, any DL solution with current can be
transformed into a currentless solution by
symmetrizing the velocity distributionDLs occur
as a result of forced changes in the distribution
functions. These distributions need not carry
current.
31DL modelette developed at ANU with M. Lieberman
- 1-D Diffusion-based model (no B)
- Boltzmann electrons (Cst Te)
- No volume losses
- Region 1 creates Region 2
- Ion flow from left to right only
- Region 2 has static and beam ion populations
32Overview of results from DL modelette
Model
Experiment
Current-free
M. Lieberman, A. Vicquerat, C. Charles, R.W.
Boswell
Main inputs length ratio l/h and expansion area
ratio Ab/A1
33No-DL model
Given h, l, Ab, A1, find b then Te
No VDL, ub or nb but can look at parameter space
- b and Te values similar to DL model
- Always 2 solutions for all values of l, h, Ab,
A1 - One solution discarded
34Solution domain for DL and no DL models
- 0.5ltbh/plt1
- 1ltl/hlt1 p /(2 b h)
- Ab/A1ltsqrt2.7
- Ab/A1gtsqrt2.7/cosb(l-h)
- Abcosb(l-h)A1cot bh0
- Solid vertical
- Solid horizontal
- Top right corner
- Dashed line
- Dotted line
35Summary of progress on modeling
- 1-D Diffusion-based model with Boltzmann
electrons - Source creates DL and downstream plasma
- Solutions for DL and no-DL models
- DL located at h
- B forces DL solutions ?
- Restricted parameter space related to geometry,
expansion - Excellent agreement with pressure
- Estimate net current and net charge at DL
position - Pre-acceleration into DL easily implemented
- Sheaths at ends can be implemented in Modelette 2
36Data base on this particular helicon CFDL
- C. CHARLES and R.W. BOSWELL, Applied Physics
Letters 82, 1356-1358 (2003) - Current-free double-layer formation in a
high-density helicon discharge - S. A. COHEN, N. S. SIEFERT, S. STANGE, R. F.
BOIVIN, E. E. SCIME, F. M. LEVINTON, - Phys. Plasmas 10, 2593 (2003)
- Ion acceleration in plasmas emerging from a
helicon-heated magnetic-mirror device - C. CHARLES, Applied Physics Letters 84, 332-334
(2004) - Hydrogen ion beam generated by a current-free
double-layer in a helicon plasma - C. CHARLES, R.W. BOSWELL, Phys. Plasmas 11,
1706-1714 (2004) - Laboratory evidence of a supersonic ion beam
generated by a current-free "helicon"
double-layer - XUAN SUN, C. BILOIU, R. HARDIN, E. E. SCIME,
Plasma Sources Science and - Technology 13, 359 (2004)
- Parallel velocity and temperature of argon ions
in an expanding, helicon source driven plasma - C. CHARLES, R.W. BOSWELL, Phys. Plasmas 11,
3808-3812 (2004) - Time development of a current-free double-layer
- N. PLIHON, C.S. CORR, P. CHABERT, Applied
Physics Letters 86, 091501 (2005) - Double layer formation in the expanding region of
an inductively coupled electronegative plasma - A. MEIGE, R.W. BOSWELL, C.CHARLES, J.P. BOEUF,
- G. HAGELAAR, and M.M. TURNER, IEEE Transactions
on Plasma Science 33, 334-335 (2005) - One-dimensional simulation of an ion-beam
generated by a current-free double-layer
37Coronal heating - an unsolved problem
Coronal funnels
Dowdy et al., Solar Phys., 105, 35, 1986
- Striking similarity between laboratory CFDL and
coronal funnels - Acceleration of the plasma along open field
fines to - supersonic velocities
R.W. Boswell, E. Marsch, C. Charles Submitted to
Astrophysical Journal Letters, June 2005
38Applications of this type of DL?
- Magneto-plasma thrusters
- Helicon Double Layer Thruster
- Surface functionalisation
- Broad ion beam
- Space plasmas
- solar corona
- aurora
- pulsars
- extragalactic jets