Title: Animal Support
1Animal Support Skeletal Systems I. Selective
Forces A. Balance between stiffness and
strength -- stiffness resistance to bending --
strength load that can be borne before
breaking B. Weight must be
lightweight C. Resist forces of compression
and tension
2Animal Support Skeletal Systems II. Skeletal
Materials A. Fluid water coelomic fluid
hydrostatic skeleton B. Connective
tissue -- protein fibers in extracellular
matrix -- provides support for all body
tissues -- collagen most common protein
support fiber great tensile strength
provides flexibility and resistance to
stretching this fiber alone meets many of
the requirements for a support system
3Animal Support Skeletal Systems II. Skeletal
Materials A. Fluid B. Connective
tissue C. Cartilage -- semi-rigid
connective tissue (protein-sugar gel interlaced
with meshwork of collagen fibers) --
produced by chondrocytes -- found in all
animals most developed in vertebrates
chondrocytes
4Animal Support Skeletal Systems II. Skeletal
Materials A. Fluid B. Connective
tissue C. Cartilage D. Bone
subphylum Vertebrata 1. structure --
collagen fibers (resist tension) embedded in
matrix of CaPO4 (hydroxyapatite)
(resists compression) -- bones for
locomotion long tubes lightweight provide
stiffness strength
5Animal Support Skeletal Systems II. Skeletal
Materials A. Fluid B. Connective
tissue C. Cartilage D. Bone
subphylum Vertebrata 1. structure 2.
formation a. cells involved
osteocytes -- osteoblasts secrete bone --
osteoclasts reabsorb bone
6Animal Support Skeletal Systems II. Skeletal
Materials A. Fluid B. Connective
tissue C. Cartilage D. Bone
subphylum Vertebrata 1. structure 2.
formation a. cells involved b.
types of bone -- endochondral bone develops
from cartilage
cartilage
osteoclasts
osteoblasts
7Animal Support Skeletal Systems II. Skeletal
Materials A. Fluid B. Connective
tissue C. Cartilage D. Bone
subphylum Vertebrata 1. structure 2.
formation a. cells involved b.
types of bone -- endochondral bone develops
from cartilage -- intramembranous bone
develops from sheets of bone cells
8Animal Support Skeletal Systems II. Skeletal
Materials A. Fluid B. Connective
tissue C. Cartilage D. Bone
subphylum Vertebrata 1. structure 2.
formation a. cells involved b.
types of bone c. hormonal regulation --
parathyroid hormone (PTH) stimulates bone
formation -- calcitonin inhibits bone
formation
9Animal Support Skeletal Systems II. Skeletal
Materials E. Chitin most developed in
Phylum Arthropoda -- chitin fibers
embedded in matrix of hardened protein
(sclerotized proteins) --
lightweight very strong
Exocuticle
Endocuticle
Fig. 29-1 p. 646)
10Animal Support Skeletal Systems II. Skeletal
Materials E. Chitin -- chitin
fibers in endocuticle laid down in layers, each
with different orientation
resists tension compression -- proteins
of matrix can be hardened (sclerotized) for
stiffness, esp. in exocuticle
Exocuticle
Endocuticle
Fig. 29-1 p. 646)
11- Animal Support Skeletal Systems
- Skeletal Materials
- Types of Skeletal Systems
- A. Hydrostatic skeleton
- -- muscles push against fluid in gut or coelom
- -- generates hydraulic movement
- -- very common can occur with other skeletal
types - -- inexpensive and efficient
-
12Animal Support Skeletal Systems III. Types of
Skeletal Systems A. Hydrostatic skeleton 1.
Phylum Cnidaria a. polyp
(Fig. 13-3 p. 263)
13(No Transcript)
14Animal Support Skeletal Systems III. Types of
Skeletal Systems A. Hydrostatic skeleton 1.
Phylum Cnidaria b. medusa
bell
15(No Transcript)
16Animal Support Skeletal Systems III. Types of
Skeletal Systems A. Hydrostatic skeleton 2.
Phylum Nematoda muscles push against fluid in
pesudocoelom cuticle is non-elastic
cuticle
longitudinal muscles
pseudocoelom
17Animal Support Skeletal Systems III. Types of
Skeletal Systems A. Hydrostatic skeleton 2.
Phylum Nematoda
Fluid
longitudinal muscles contract region of
body shortens
longitudinal muscles relax region of
body elongates
Fluid
Fluid
Fluid
18Animal Support Skeletal Systems III. Types of
Skeletal Systems A. Hydrostatic skeleton 3.
Phylum Annelida schizocoelom divided into
compartments by septa
gut
setae
19Animal Support Skeletal Systems III. Types of
Skeletal Systems A. Hydrostatic skeleton 4.
Phylum Mollusca a. hemolymph and sinuses
20Animal Support Skeletal Systems III. Types of
Skeletal Systems A. Hydrostatic skeleton 4.
Phylum Mollusca b. Jet propulsion in
Cephalopods
fin
siphon
collar
mantle (body tube)
21 siphon
collar
mantle
fin
22Animal Support Skeletal Systems III. Types of
Skeletal Systems A. Hydrostatic skeleton 5.
Phylum Echinodermata a. water vascular
system
(Fig. 22-5 p. 475)
23Water Vascular System
(Fig. 22-6 p. 476)
24Animal Support Skeletal Systems III. Types of
Skeletal Systems A. Hydrostatic skeleton 5.
Phylum Echinodermata b. tube feet (tube
foot ampulla podium)
enterocoelom
ampulla
podium
25(No Transcript)
26Animal Support Skeletal Systems III. Types of
Skeletal Systems B. Exoskeleton 1.
Protozoa Subphylum Sarcodina protection and
support
Radiolarians SiO2
Foraminiferans CaCO4
27Animal Support Skeletal Systems III. Types of
Skeletal Systems B. Exoskeleton 2. Phylum
Cnidaria movement by hydrostatic skeleton
exoskeleton for protection and
support -- Class Hydrozoa
perisarc
28Exoskeletons Cnidaria Hydrozoa
29Exoskeletons Cnidaria -- Class Anthozoa
30Animal Support Skeletal Systems III. Types of
Skeletal Systems B. Exoskeleton 3. Phylum
Mollusca for protection
31Exoskeletons Mollusca
32Animal Support Skeletal Systems III. Types of
Skeletal Systems B. Exoskeleton 4. Phylum
Arthropoda chitinous exoskeleton used for
locomotion a. structure of cuticle
Exocuticle
Endocuticle
Fig. 29-1 p. 646)
33Animal Support Skeletal Systems III. Types of
Skeletal Systems B. Exoskeleton 4. Phylum
Arthropoda b. use of cuticle to generate
movement flight in insects 1) structure of
thorax and wing hinge
34Insect Thorax and Wing Hinge
(Fig. 21-2 p. 444)
head
thorax
abdomen
(Fig. 21-6 p. 445)
35Animal Skeletal Systems III. Types of Skeletal
Systems B. Exoskeleton 4. Phylum
Arthropoda b. use of cuticle to generate
movement flight in insects 1) structure of
thorax and wing hinge 2) indirect flight
muscles -- do not attach directly to
wing -- raise and lower wings
indirectly by changing shape
of thorax -- main power for
flight in bees, wasps,
butterflies, beetles, flies
36Indirect Flight Muscles of Insects
Dorso-ventral Muscles (raise wings)
Wing Hinge
Dorso-longitudinal Muscles (lower wings)
(Fig. 21-11 p. 447)
37Dorsoventral muscles contracted
wings rise
Dorsolongitudinal muscles contracted
wings lower
38Animal Skeletal Systems III. Types of Skeletal
Systems B. Exoskeleton 4. Phylum
Arthropoda b. use of cuticle to
generate movement flight in insects 1)
structure of thorax and wing hinge 2)
indirect flight muscles main power for
flight 3) direct flight muscles -- attach
directly to wing hinge and wing
base -- fine tuned adjustments
during flight -- used for
steering -- primary flight muscles in
dragonflies grasshoppers
Dorso-longitudinal muscle
Direct flight muscles
Dorso-ventral muscle
39 figure 8 pattern of wing movement
40hovering
41Animal Support Skeletal Systems III. Types of
Skeletal Systems C. Endoskeleton 1. Phylum
Porifera -- endoskeleton of spicules and/or
spongin -- used for support
42Animal Support Skeletal Systems III. Types of
Skeletal Systems C. Endoskeleton 2. Phylum
Echinodermata -- endoskeleton of ossicles
-- used for support
43Animal Support Skeletal Systems III. Types of
Skeletal Systems C. Endoskeleton 2. Phylum
Echinodermata -- endoskeleton of ossicles
-- used for support
44Animal Support Skeletal Systems III. Types of
Skeletal Systems C. Endoskeleton 3. Phylum
Chordata only phylum that uses endoskeleton for
locomotion a. notochord
45Animal Support Skeletal Systems III. Types of
Skeletal Systems C. Endoskeleton 3. Phylum
Chordata a. notochord b.
vertebrate skeleton 1) axial
skeleton 2) appendicular
skeleton 3) tendons ligaments
(Fig. 29-9 p. 653)
46Nuchal ligament