Title: GEOS 251/S2006
1GEOS 251/S2006
- Minerals Building Blocks of Rocks
2Mineral
- A naturally occurring, inorganic solid with an
ordered internal structure and a narrow range of
chemical composition
3Fig. 2.1
4Rock
- A naturally occurring consolidated mixture of
minerals or mineral-like substances
5Atoms
- A rigid sphere about 1 angstrom (Å) in diameter
-- an angstrom is 10-10 m - At the center of an atom is a nucleus which
contains most of the mass of the atom - Protons with a positive charge
- Neutrons with no charge -- neutral
- Quarks and other interesting things
6Atoms
- Electrons (E) negative charge, very little mass
- Protons (Z) positive charge, mass 1832 times
greater than electron - Neutrons (N) no electric charge, mass 1833 times
greater than electron
7Abundance of the elements (wt. )
- Crust Whole Earth
- Oxygen 46.3 29.5
- Silicon 28.2 15.2
- Aluminum 8.2 1.1
- Iron 5.6 34.6
- Calcium 4.1 1.1
- Sodium 2.4 0.6
- Potassium 2.1 0.1
- Magnesium 2.3 12.7
- Titanium 0.5 0.1
- Nickel trace 2.4
- All others trace 2.7
8Atomic structure
Nucleus protons, neutrons
- Electrons orbit
- around the
- nucleus in
- discrete shells.
9Fig. 2.2a
10Energy-level shell the space occupied by
electrons of a particular energy level
- First level (K) 2 electrons
- Second level (L) 8 electrons
- Third level (M) 18 electrons
- Fourth level (N) 32 electrons
11L
K
Fig. 2.2b
12L
K
Fig. 2.2c
13Fig. 2.3a
14Fig. 2.3b
15Fig. 2.3c
16Atomic structure
- Chemical characteristics of elements determined
largely by number of protons - of protons atomic number (A)
- of neutrons (N) A atomic weight (Z)
17Ion
An electrically charged particle composed of an
atom that has either lost or gained electron(s)
to or from another atom.
18Ions
When an atom loses or gains an electron it is
called an ion. Positively charged ions (loss of
electron) are called cations. Negatively charged
ions (gain of electron) are called anions.
19Important ions in minerals
anions charge cations charge
Si 4 K 1 Ca 2 Na 1 Al 3 Mg 2 Fe 2 or 3
O -2
20Ionic Attraction Forms NaCl (Halite)
Fig. 2.4c
21Electron Sharing in Diamond
Fig. 2.5
22Chemical Symbols
- Oxygen O Magnesium Mg
- Silicon Si Iron Fe
- Aluminum Al Sodium Na
- Potassium K Calcium Ca
- Carbon C Titanium Ti
- Hydrogen H Argon Ar
- Uranium U Zirconium Zr
- Strontium Sr Lead Pb
23Periodic Table of Elements
Fig. 2.6
24(H)
(Na)
P Proton N Neutron
Fig. 2.7
(Mg2)
25(O2-)
P Proton N Neutron
(Cl-)
Fig. 2.7
26Carbon Tetrahedron of Diamond
Fig. 2.8a
27Network of Carbon Tetrahedra
Fig. 2.8b
28Atomic Structure of Sodium Chloride (Halite)
Fig. 2.9
29Galena
Fig. 2.10b
Chip Clark
30Perfect Crystals
Halite (cube)
Quartz (hexagonal)
Fig. 2.11
31Halite (Cubic) and Quartz (Hexagonal)
Ed Degginger Bruce Coleman
Breck P. Kent
32Quartz Geode
Large space allows larger crystals
Fig. 2.12
Chip Clark
33Ionic Radii Determine Packing Geometry
Fig. 2.13
34Ionic Radius and Charge
35Graphite
Atomic Structure Crystal Form
Ken Lucas, Visuals Unlimited
Fig. 2.15a
36Diamond
Atomic Structure Crystal Form
E.R. Degginger, Photo Researchers
Fig. 2.15b
37Polymorphs
Minerals with the same chemical composition but
different structure. e.g., diamond and
graphite andalusite, kyanite, and sillimanite
38Polymorphs of Carbon
P.L. Kresan
39Minerals lots and lots of em
- There are some 3,500 recognized minerals found on
Earth. - However,
- For our purpose, we can focus on about a dozen.
- Silicates - Si, O and other elements, the most
abundant mineral group in the Earths crust - Carbonates - Ca, Mg and CO3
- Salts - NaCl
40(No Transcript)
41Silica-oxygen tetrahedra
- Four oxygens surrounding a silicon ion.
- These tetrahedra combine to make the framework of
the silicates. - Different combinations produce different
structures.
42Silicate IonSiO4 4
Fig. 2.16a
43Fig. 2.16b
44Olivine
Chip Clark
Isolated Tetrahedra Silcate (example olivine)
Fig. 2.17a
45Fig. 2.17
46Sheet Silicate (example mica)
Fig. 2.17d
47(No Transcript)
48Framework Silicate (example quartz)
Fig. 2.18
49Some Silicate Minerals
Mica
Feldspar
Olivine
Pyroxene
Quartz
Chip Clark
Fig. 2.19
50Mafic Silicates
Olivine
Pyroxene
Felsic Silicates
Quartz
Feldspar
Chip Clark
51Important mineral groups
Name Important constituents
(other than O)
Olivine Si, Fe, Mg Pyroxene Si, Fe, Mg,
Ca Amphibole Si, Ca, Mg, Fe, Na, K Micas Si, Al,
K, Fe, Mg Feldspars Si, Al, Ca, Na,
K Carbonates C, Ca, Mg Evaporites K, Cl, Ca, S
52Some Nonsilicate Minerals
Spinel
Halite
Gypsum
Hematite
Galena
Calcite
Pyrite
Chip Clark
53Oxides
Hematite
Magnetite
Corundum
54Sulphates
Galena
Gypsum
Pyrite
55Carbonates
Dolomite
Calcite
56Atomic Structure of Calcium Carbonate (Calicite)
Fig. 2.21a
57Atomic Structure of Calcium Carbonate(Calcite)
Fig. 2.21b
58(No Transcript)
59Important minerals
Quartz SiO2 Calcite CaCO3 Biotite Olivine (Mg,Fe)
2SiO4 Plagioclase feldspar K-feldspar
60Mineral formation
- Crystallization from a magma
- Crystal growth in the solid state
- Precipitation from solution
61Mineral identification
- Color
- Crystal form
- Hardness
- Cleavage
- Density
- Streak
62Calcite passes the acid test
Fig. 2.22
63Aldo Tutino Art Resource
64(No Transcript)
65Atomic Structure of Micas
Fig. 2.23
66Sheety Cleavage of Mica
Fig. 2.23
Chip Clark
67Rhomboidal Cleavage of Calcite
Fig. 2.24
Chip Clark
68Comparison of Cleavage and Crystal Faces
Pyroxene
Amphibole
Fig. 2.25
69(No Transcript)
70Hematite
Streak
Fig. 2.26
Brent P. Kent
71(No Transcript)
72Chrysotile (a Form of Asbestos)
Runk/Schoenberger/Grant Heilman Photography