Title: Mars Odyssey Gamma-Ray Spectrometer
1Mars Odyssey Gamma-Ray Spectrometer
Richard Starr NASA/GSFC Catholic University and
the GRS team
2Mars Odyssey GRS Timeline
- 2001 April 07 Launch
- 2001 June 7 day warm anneal (42 C)
- 2001 June 27 Begin cruise data collection
- 2001 August 30 End cruise data collection
- 2001 October 23 Mars orbit insertion
- 2002 February 09 Begin mapping phase
- 2002 March 10 day warm anneal (52 C)
- 2002 March 26 Resume mapping
- 2002 May 10 day hot anneal (73 C)
- 2002 May 21 Resume mapping
- 2002 June 04 Boom deployment
3Gamma-Ray Spectrometer
The Mars Odyssey gamma-ray spectrometer is a 67
mm diameter 67 mm long, high-purity, n-type Ge
crystal that is encapsulated in a sealed titanium
canister. The detector is passively cooled to
cryogenic temperatures (lt130 K).
4Ge vs. NaI
5GRS Accumulation Times
The gamma-ray signal comes from the upper 20 to
30 cm of soil. Thermal and epithermal neutrons
are sensitive to composition about a factor of 2
or 3 deeper than gamma rays.
6GRS Coverage
7Cruise Spectrum
8Background Lines
Over 100 background lines have been identified.
The intensity of many will be reduced after boom
deployment. Others, resulting from detector
materials like Ge and Ti, will not be affected.
9Solar Proton Events During MO Cruise
  Event-Integrated Fluences for Solar Particle
Events since 7 April 2001 Â Â Â (Fluences, F, are
omnidirectional - 4-pi - protons/cm2) Â Â Â Â Â Â
Date     Fgt10 MeV   Fgt30 MeV   Fgt60 MeV     Â
4/11/01Â Â Â Â 2.4E8Â Â Â Â Â 3.3E7Â Â Â Â Â 6.0E6 Â Â Â Â Â
4/15/01Â Â Â Â 4.5E8Â Â Â Â Â 1.5E8Â Â Â Â Â 7.0E7 Â Â Â Â Â
4/18/01Â Â Â Â 1.7E8Â Â Â Â Â 4.8E7Â Â Â Â Â 1.8E7 Â Â Â Â Â
5/08/01Â Â Â Â 2.5E7Â Â Â Â Â 1.3E6Â Â Â Â Â 2.5E5 Â Â Â Â Â
5/20/01Â Â Â Â 5.0E6Â Â Â Â Â 1.8E6Â Â Â Â Â 8.0E5 Â Â Â Â Â
6/15/01Â Â Â Â 1.9E7Â Â Â Â Â 1.7E6Â Â Â Â Â 5.0E5 Â Â Â Â Â
8/16/01Â Â Â Â 2.8E8Â Â Â Â Â 9.8E7Â Â Â Â Â 3.1E7 Â Â Â Â Â
9/25/01Â Â Â Â 7.4E9Â Â Â Â Â 1.2E8Â Â Â Â Â 1.9E8 Â Â Â Â
10/02/01Â Â Â Â 9.8E8Â Â Â Â Â 6.5E7Â Â Â Â Â 3.6E6 Â Â Â Â
10/19/01Â Â Â Â 1.2E7Â Â Â Â Â 2.2E6Â Â Â Â Â 4.0E5 Â Â Â Â
10/22/01Â Â Â Â 1.4E7Â Â Â Â Â 4.5E6Â Â Â Â Â 1.5E6 Â Â Â Â
11/05/01Â Â Â Â 1.5E10Â Â Â Â 3.0E9Â Â Â Â Â 6.0E8 Â Â Â Â
11/23/01Â Â Â Â 8.1E9Â Â Â Â Â 8.0E8Â Â Â Â Â 7.0E7 Â Â Â Â
12/16/01Â Â Â Â 3.6E8Â Â Â Â Â 9.0E7Â Â Â Â Â 2.4E7 Â Â Â Â
12/31/01Â Â Â Â 2.7E8Â Â Â Â Â 1.5E7Â Â Â Â Â 9.0E5 Â Â Â Â Â
1/11/02Â Â Â Â 1.4E8Â Â Â Â Â 6.0E6Â Â Â Â Â 3.0E5
10Detector Configuration
Mars Odyssey GRS Detector
11Line Shape and Trapping
Hole current
Inside n-contact
Outside p-contact
Germanium crystal
12Radiation Damage and Detector Annealing
13Comparison of Cruise to Mars Orbit
14Orbital Spectrum High Energy
15Orbital Spectrum Low Energy
16Why do we believe its H20?
- Hydrogen can combine with many elements, such as
sulfur to form H2S, or metals to form hydrides,
but these compounds are not likely to be stable
given the highly oxidizing conditions on Mars. - Many theoretical studies have predicted the
regions where water ice should be
thermodynamically stable on Mars. - Farmer and Doms (1979) conclude that ground ice
should be stable in the regolith where
temperatures never exceed 200 K. - 10 cm depth at 80 latitude
- 100 cm depth at 50 latitude
- Mellon and Jakosky (1993) model water ice
stability at various depths below the surface
versus latitude.
17Summary
- The Mars Odyssey gamma-ray and neutron
spectrometers have identified a significant water
ice component south of -60 latitude. - The ice is not uniformly distributed within the
soil but is buried under an ice-poor layer. - North of 60 latitude there is a thick seasonal
CO2 cap that is opaque to gamma rays. - We are detecting many gamma-ray lines from
elements on the surface of Mars, in addition to
H, that are of geochemical significance Th, U,
K, O, Si, Mg, Cl, Fe - Over the life of the mission (gt2 years) many of
these elements will be mapped with a spatial
resolution of order a few hundred kilometers.