Title: Dipole-dipole interaction in quantum logic gates and quantum reflection
1Dipole-dipole interaction in quantum logic gates
and quantum reflection
- Angela M. Guzmán
- Departamento de Física, Universidad Nacional de
Colombia, Bogotá, Colombia, and visiting
Professor, - School of Physics, The Georgia Institute of
Technology, Atlanta, GA 30332, USA. - angela.guzman_at_guzgon.com.
21. Quantum dipole-dipole interaction
2. Controlled collisions between neutral atoms.
s-scattering .vs. dipole-dipole interaction in
a phase gate.
Marco Dueñas, Universidad Nacional de Colombia
3. van der Waals interaction in an external
field Quantum reflection in evanescent-wave
mirrors static .vs. dynamic van der Waals
(dipole-dipole) potential.
Brian Kennedy, Georgia Institute of Technology.
3DIPOLE-DIPOLE INTERACTION
4DIPOLE-DIPOLE INTERACTION
Controlled collisions between adjacent atoms in
an optical lattice
Atom-wall interaction in quantum reflection
Cold atoms
Wannier functions
5s-scattering (Fermi Potential)
D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W.
Gardiner, and P. Zoller. Phys. Rev. Lett. 82,1975
(1999).
6 A 1D moving optical lattice (with
polarization gradient)
7Optical potential U,U-
2U0
U0
0
0
1.6
0.8
kLz
8Controlled Collisions
CONTROLLED COLLISION
9DIPOLE-DIPOLE INTERACTION
Atom 1
Atom 2
K2
K1
k
k
VACUUM PHOTONS
Induced dipole -moment.
10Selection rules
Transition probabilities
Elastic collisions
11(No Transcript)
12Elastic collisions, dipole-dipole interaction
Interaction energy
Spatially modulated losses.
13MATRIX ELEMENTS
14Interaction energy
15ImDipole-Dipole interaction potential
16ORDERS OF MAGNITUDE
- The probability losses (probability of having
the - atoms in the original two-qubit state)
Adiabatic criterion
17Using a commutation frequency b3
18Remarks
- Long range potentials rather than s-scattering
determine the table of truth of logic gates based
on atomic collisions. - Logic operations based in the dipole-dipole
interaction can not be performed in a time scale
shorter than that of the spatially modulated
losses. - Dissipation diminishes fidelity and does not
allow for successive quantum operations. - Same limitations apply to schemes with enhanced
dipole-dipole interaction G. K. Brennen, C. M.
Caves, P. S. Jessen, and I. H. Deutsch, Phys.
Rev. Lett. 82, 1060 (1999), unless special
bichromatic engineering is used to balance
losses. -
19 Atom-wall interaction in atomic reflection the
dipole-dipole interaction
- J.E. Lennard-Jones, Trans. Faraday Soc. 28,33
(1932).
Perfect conductor
Perfect conductor
Perfect conductor
r
r
r
r
r
r
r
r
20 - H.B. Casimir and D. Polder, Phys. Rev. 73, 360
(1948). Radiative corrections
21ALKALI ATOMS GOLD SURFACE
Exp. 1 Theor. 2
Cs 1.087 4.143 0.59
Rb 0.938 3.362 0.65
K 0.791 2.877 0.73
3
1 A. Shih, V.A. Parsegian , Phys. Rev. A 12,
835 (1975) 2 A. Derevianko, W. R. Johnson, M.
S. Safranova, J. F. Babb Phys. Rev. Lett.
82, 3589 (1999). 3 F. Shimizu, Phys. Rev.
Lett. 86, 987 (2001) (Neon)
22QUANTUM REFLECTION
Na BEC
T. A. Pasquini, Y-I Shin, C. Sanner, M. Saba, A.
Schirotzek, D.E. Pritchard, and W. Ketterle,
arXiv.org/cond-mat/0405530.
23EVANESCENT-WAVE ATOMIC MIRRORS
M. Kasevich, K. Moler, E. Riis, E. Sunderman, D.
Weiss, and S. Chu, Atomic Physics 12, AIP
Conf. Proc. 233, 47 (1991).
A means of measuring atom-surface forces
24DIPOLE-DIPOLE INTERACTION
25Dynamic van der Waals potential between a ground
state atom and a dielectric surface in the
presence of an evanescent wave and the EM vacuum.
Dissipation
Dynamic Potential
26Dissipation due to the interaction through the
vacuum
27Dynamic van der Waals potential
Static van der Waals potential
28Effective potential
Optical potential
Dynamic van der Waals potential
Effect of van der Waals potential
29Quantum reflection
- Evanescent waves. A. Landragin, J.-Y. Courtois,
G. Labeyrie, N. Vansteenkiste, C. I. Westbrook,
and A. Aspect, Phys. Rev. Lett. 77, 1464 (1996).
From a solid surface at normal incidence. T. A.
Pasquini, Y-I Shin, C. Sanner, M. Saba, A.
Schirotzek, D.E. Pritchard, and W. Ketterle,
arXiv.org/cond-mat/0405530.
30Quantality of the potentials
q
31Remarks
- Atom-wall and atom-atom van der Waals potential
in external fields relate to the dynamic rather
than to the static polarizability. - The shape of the reflecting potential is not
controlled by S0 alone. Variations in field
intensity scale the potential but variations in
detuning shift the maximum. - Quantum reflection from solid surfaces occurs
only for atomic velocities close to zero (heating
has been observed). Quantum reflection from
evanescent-wave atomic mirrors occurs at finite
energies, but the reflectivity will be less than
one because of dissipative effects. - Applications in atomic funnels, quantum
reflection engineering, optical traps for quantum
gases, Rydberg atoms in optical lattices (a power
dependent line width of the fluorescence spectrum
has already been observed, FiO 2004). -
-