Title: SCHEMAS Workshop 3 Introduction
1Extraction of Ontological Information
from Lexicon and Corpora
Dimitrios Kokkinakis Maria Toporowska Gronostaj
2Motto
- To process information
- you need information
- P. Vossen, 2003
3Content
- Introduction
- Background
- Language resources
- Methodology
- Lexicon-driven extraction of ontological data
- Corpus-driven extraction of ontological data
- Conclusions
4Background
- What is ontological information ?
- information necessary for making
common-sense-like inferences based on our
knowledge of the world - How is it represented?
- in form of structured sets of conceptual types
often inclusive semantic relations underlying
them - Where?
- SIMPLE-ontology, EWN, LexiQuest
5Background
- Why is ontological information relevant for NLP?
- promotes development of lexicon resources which
aim at text-understanding as it offers
disambiguation means - provides knowledge needed in
- machine translation (MT)
- information retrieval (IR)
- information extraction (IE)
- summarization
- computer aided language learning (CALL)
- enables communication on the Semantic Web
6Background
- What is meant with a semi-automatic extraction of
OI? - some human intervention is involved in
information processing to maximize its effects - What will we achieve with it?
- enhance the content of the Swedish SIMPLE lexicon
in a quick and costs-effective way - investigate lexicon-driven and corpus-driven
methodologies
7Methodology in general (1)
- Methodological assumptions
- lexical databases, MRD lexica and corpora can be
mined for ontological information - relevant factors in information processing
- resource size
- degree of extractability
- implicitness and explicitness of information
- bootstrapping
8Methodology in general (2)
- Approach text data mining (TDM)
- TDM is a process of exploratory data analysis
using text that leads to the discovery of
heretofore unknown information, or to answers to
questions for which the answer is not currently
known (Mitkov 2003, Hearst 2003) - Result evolutionary lexicon model
- output data are reused to discover new data,
which leads - to a successive enlargement of lexicon
9Language resources SIMPLE-SE (1)
- Corpora
- 150 million words i Språkbanken
- Lexicon resources
- SIMPLE-SE lexicon
- GLDB Göteborg lexical database
- SEMNET
10Language resources SIMPLE-SE (2)
- About SIMPLE-SE
- computational lexicon with explicit ontological
information (OI) - 10 000 lexicon units
- 7 000 nouns, 2 000 verbs, 1 000 adjectives
- manually annotated with semantic and OI which is
linked to the morphosyntactic information in the
PAROLE lexicon - multidimensional
11Language resources SIMPLE-SE (3)
- SIMPLE-SE supports
- word sense disambiguation
- kastanji 1/1/0 FRUIT
- kastanji 1/1/1 PLANT
- kastanji 1/1/2sms COLOUR
- kastanji 1/1/3 FOOD
- kastanji 1/2/0 ORGANIC OBJECT
- finding regular polysemy
- creating multilingual links between lexicons
12Language resources SIMPLE-SE (4)
- SIMPLE-SE supports
- text annotation
- text data mining knowledge based information
processing - evaluation
- pattern matching based on the ontological
information assigned to arguments (selection
restrictions/preferences)
13Language resources SIMPLE-SE (5)
- selection restriction based pattern matching
- Word/expression Position Ontological term
- injicera (inject) object Substance
- bebo (inhabit) object Area
- griljera (roast) object Food
- förlova sig (become engaged) subj., prep.
obj Human - devalvera (devaluate) obj. Money
- ha ont i (have pain in) prep. obj. Body part
14Language resources GLDB
- Göteborg lexical database, GLDB
- 67 000 core senses with stringent definition
format - implicit, but extractable genus proximum (genus
word) - implicit onto info about arguments in definition
extensions - 35 000 explicit semantic references on semantic
relations like synonymy, antonymy, hyperonymy,
hyponymy and cohyponymy
15Language resources SEMNET (1)
- SEMNET hyperonymic taxonomy
- Extraction of hyperonymy relations from GLDBs
definitions - (methodology software Y. Cederholm, 1999)
- Recognition of headwords (genus proximum) in
definitions
16Language resources SEMNET (2)
- Input data
- GLDB definitions
- 44 915 noun lexeme
- 10 082 verb lexeme
- Two analysis methods which complete each other
17Language resources SEMNET (3)
- Method I
- distinguishing typical def. patterns for core
senses - (see overhead/handout from Cederholm Y. 1999,
Tabell 1. Definitionsformler)) - pattern matching against non-lemmatized
definitions (using regular expressions)
18Language resources SEMNET (4)
- Method II
- Input lemmatized definitions
- Assumptions
- genus word is the first word in the definition
which matches the part of speech of the headword,
the word being defined - method II finds even those genus words which
cannot be parsed with the method I
19Language resources SEMNET (5)
- Analysis results for nouns
- tot. number of analysis tot. number of
correct analysis - Method I 8127 (64) 7141 (56)
- Method II 12 194 (95) 8974 (70)
- Method I II 12 528 (98) 10536 ( 83)
- (evaluation based on 12 786 manually annotated
noun genus words) - Approximated result for ca 45 000 nouns i genus
position - 36 500 correctly recognised noun genus words
20Language resources SEMNET (6)
- The 33 most frequent noun genus words i SEMNET
- 2702 person 858 typ 612 del
- 461 anordning 314 område 261 kvinna
- 228 tillstånd 219 lära 217 titel
- 207 grupp 183 föremål 173 sammanfattning
- 172 mängd 169 sätt 167 plats
- 166 system 165 växt 162 ämne
- 153 apparat 145 förmåga 133 medlem
- 128 språk 122 stycke 122 redskap
- 122 plats 119 känsla 118 form
- 116 metod 116 handling 113 enhet
- 111 ljud 110 instrument 102 verksamhet
-
21Language resources SEMNET (7)
- Hyperonymy taxonomy sjukdom
- -- 1 akutfall 1/1
- -- 2 almsjuka 1/1
- -- 3 astma 1/1
- -- 4 avitaminos 1/1
- -- 5 basedow 1/1
- -- 6 bladrullsjuka 1/1
- -- 7 blodkräfta 1/1
- -- 8 blodsjukdom 1/1
- -- 9 blödarsjuka 1/1............................
................ (totalt 66 hyponyms)
22Definition-driven extraction of ontological
information (1)
- Resources SIMPLE-SE SEMNET GLDB
- Methodological assumptions
- Hyperonymic taxonomy in combination with
ontological information in SIMPLE-SE supports
semiautomatic extraction of ontological
information - Procedure
- Preparatory phase relevant for all ontological
processing annotate GLDB data with the ontol.
info from the SIMPLE-SE to generate ontologically
enriched SEMNET
23Definition-driven extraction of ontological
information (2)
- Methodological assumptions (cont.)
- The extracted ontological information is an
approximation of ontological category until
verified with other methods, t.ex. a
corpus-driven methodology, semantic/ontological
data från GLDB or pattern matching based on
selection restrictions - Since annotated words in SIMPLE cover both
hyperonyms and hyponyms, two methods are proposed
here that put in focus each of these semantic
categories
24Definition-driven extraction of ontological
information (3)
- Method I
- from annotated hyponyms to new annotations of
hyperonyms - Assumption
- One can approximate ontological category of a
hyperonym given some information on its hyponyms
and using the structural knowledge inherent in
ontology - Annotation of a hyperonym can be performed if all
of the annotated hyponyms share the same
ontological tag or if the tags share a common
superordinate tag, except the tag Entity which is
ontologically heterogeneous and thus relatively
uninformative
25Definition-driven extraction of ontological
information (4)
- Method I example
- Hyponyms known info
- diabetes Disease cat Air animal,
- asthma Disease dog Air animal
- cholera Disease fisk Water_animal
- Hyperonym new info
- disease gtDisease djur gt Animal
26Definition-driven extraction of ontological
information (5)
- Method II
- from annotated hyperonyms to new annotations of
hyponyms - Assumption (resulting in approximation)
- Direct hyponyms (hyponyms which are directly
subordinated to the genus word/hyperonym)
automatically inherit the ontological category of
their hyperonyms och therefore manual annotation
of the most frequent genus words/hyperonyms can
be recommended and justified. - hyperonym known info hyponyms new info
- myntenhet Money gt dollar, krona, pund,
rubel... Money
27Definition-driven extraction of ontological
information (6)
- The assumption has far reaching consequences for
all those annotated hyponymic words which also
occur as genus words, since their subordinates
can automatically inherit the ontological class
from the hyperonym/genus word. - Cascade effect
- sjukdom (disease) 66 hyponymes
- infektionssjukdom 25 hyponyms
- könsjukdom 4 hyponyms
28Definition-driven extraction of ontological
information (7)
- Cascade distribution of the ontological type
Animal - Djur 102 hyponyms
- hovdjur 10
- ryggradsdjur 8
- fågel 98
- däggdjur 18
- Note 80 most frequent genus words, when
ontologically annotated, give rise to 11 000
automatically annotated genus words at the first
hyponymy level. This number further increases due
to the cascade effect.
29Definition-driven extraction of ontological
information (8)
- 2702 person 1/1 person HUMAN
- 461 anordning 1/1 device ARTIFACT
- 314 område 1/1 area AREA (gtLOCATION)
- 261 kvinna 1/1 woman HUMAN
- 238 tillstånd 1/ state STATE
- 219 lära 1/1 doctrine DOMAIN
- 217 titel 1/1 titel SOCIAL_STATUS (gtHUMAN)
- 183 föremål 1/ thing CONCRETE_ENTITY
- 169 sätt 1/1 manner CONSTITUTIVE
- 167 plats 1/1el 4 place LOCATION
- 166 system 1/1 system CONSTITUTIVE
- 165 växt 1/1 plant PLANT
30Conclusion
- Ontological annotations are approximations. They
need to be verified against manually annotated
data and/or by means of corpus-driven methodology
for extracting ontological information - The status of ontological annotations need to be
explicitly specified in the database - Method I (from hyponyms to hyperonyms) seem to
complement the method II (from hyperonyms to
hyponyms) since the range of annotated categories
increases rapidly - The quality (and quantity) of the used lexical
resources determines the precision of the
acquired results ontology
31Conclusion contd
- To prevent overgenerating of incorrect
ontological annotation special attention needs to
be paid to - disambiguation of polysemous and homographic
genus words (hyperonyms) - krona Artifact, Money, Part
- analysis of compound nouns
- gosedjur Artifact vs husdjur Animal
32References
- Cederholm Y. 1999. Automatisk konstruktion av en
hyperonymitaxonomi baserad på definitioner i
GLDB. In Från dataskärm och forskarpärm. MISS 25.
Göteborgs universitet. - Hearst, M. 2003. Text Data Mining. In ed. R.
Mitkov The Oxford Handbook of Computational
Linguistics Oxford. - Mitkov, R. 2003. The Oxford Handbook of
Computational Linguistics Oxford. Oxford
University Press. - Vossen, P. 2003. Ontologies. In ed. R. Mitkov The
Oxford Handbook of Computational Linguistics
Oxford. - about SIMPLE see http//spraakbanken.gu.se