fMRI: Biological Basis and Experiment Design Lecture 20: Motion compensation PowerPoint PPT Presentation

presentation player overlay
About This Presentation
Transcript and Presenter's Notes

Title: fMRI: Biological Basis and Experiment Design Lecture 20: Motion compensation


1
fMRI Biological Basis and Experiment
DesignLecture 20 Motion compensation
Before
  • Rotation matrices
  • Effects on data
  • Examples

After
1 light year 5,913,000,000,000 miles?
2
Rotation matrices
Two-dimensional rotation
y
cos(? ) sin (? ) -sin(? ) cos(? )
R
x
?
r (x,y)
r' R r
r'
3
An aside matrix multiplication
y Ax
A1,1 A1,2 A1,3 ... A1,n A2,1 A2,2 A2,3
... A2,n A3,1 A3,2 A3,3 ... A3,n . .
. Am,1 Am,2 Am,3 ... Am,n
A is an m x n matrix
x1,1 x1,2 x2,1 x2,2 x3,1 x3,2 . .
. xn,1 xm,2
x is an n x p matrix
4
An aside matrix multiplication
y is m x p
x is n x p
A is m x n
A1,1 A1,2 A1,3 ... A1,n A2,1 A2,2 A2,3
... A2,n A3,1 A3,2 A3,3 ... A3,n . .
. Am,1 Am,2 Am,3 ... Am,n
x1,1 x1,2 x2,1 x2,2 x3,1 x3,2 . .
. xn,1 xm,2
x

5
Rotation matrices
Two-dimensional rotation
y
cos(? ) sin (? ) -sin(? ) cos(? )
R
x
?
r (x,y)
r' R r
r'
cos(? ) sin (? ) -sin(? ) cos(? )
x y
x cos(? ) y sin (? ) -x sin(? ) y cos(? )

r'
6
Rotation example 45 degree rotation of r (1,1)
Two-dimensional rotation
y
r (1,1)
cos(45? ) sin (45? ) -sin(45? ) cos(45?
)
R
? 45?
x
r' (?2,0)
r' R r
1/?2 1/?2 - 1/?2 1/?2
1 1
1/?2 1/?2 -1/?2 1/?2
2/?2 0

r'

x
7
Rotation example parabola (ICE10.m)
8
Three dimensional rotation
Excerpt from Wolfram MathWorld
9
Affine transformation
(Wikipedia)
10
Output of MoCo algorithms
Strong activation affects center of mass
calculation
11
Effect of MoCo increased activation size
Before
After
12
Effect of MoCo voxels maintain identity
Before
After
13
(No Transcript)
14
(No Transcript)
15
Oakes et al., Fig. 1 6
16
(No Transcript)
17
Interpolation in motion correction
uncorrected
corrected
Write a Comment
User Comments (0)
About PowerShow.com