Demonstration: - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

Demonstration:

Description:

Physics 1710 Chapter 4: 2-D Motion I. No lead. t = (2h/g) d = vtruck t ... Projectiles follow a parabola [y(x) = A Bx Cx2] Physics 1710 Chapter 4: 2-D Motion II ... – PowerPoint PPT presentation

Number of Views:30
Avg rating:3.0/5.0
Slides: 18
Provided by: cas6
Category:

less

Transcript and Presenter's Notes

Title: Demonstration:


1
Physics 1710 Chapter 4 2-D MotionI
0
  • Demonstration
  • Stuntman Lead

REVIEW
2
Physics 1710 Chapter 4 2-D MotionI
0
  • Demonstration Stuntman Lead

No lead
REVIEW
3
Physics 1710 Chapter 4 2-D MotionI
0
  • Demonstration Stuntman Lead

Proper lead d vtruck v(2h/g) d (15 m/s)v2
(3.15 m)/9.8 m/s2) d 12.0 m
REVIEW
4
Physics 1710 Chapter 4 2-D MotionI
0
  • 1' Lecture
  • Displacement, velocity and acceleration are
    vector quantities in two or more dimensions.
  • Each component of the kinematic variables
  • is separate and independent.
  • In projectile motion the x-motion is
    unaccelerated while the y-motion experiences a
    constant acceleration equal to -g.

5
Physics 1710 Chapter 4 2-D MotionI
0
  • Position r is a vector.
  • r x i y j
  • Or rx x ry y
  • Thus, one can represent a vector by a position
    vector, ie an arrow.

6
Physics 1710 Chapter 4 2-D MotionI
0
  • Displacement in 2-D is a vector
  • ? r r final - r initial
  • ? rx x final - x initial ?x
  • ? ry yfinal - y initial ?y
  • ? r ?? r?
  • ?? r? v(x final - x initial ) 2 (yfinal - y
    initial) 2
  • Tan ? (yfinal - y initial)/ (x final - x
    initial )

7
Physics 1710 Chapter 4 2-D MotionI
0
  • Average velocity is a vector
  • vave ? r / ?t
  • This means the following
  • vx, ave ? x / ?t
  • vy, ave ? y / ?t .

y(x) trajectory
y(t)
y
x
x(t)
t
8
Physics 1710 Chapter 4 2-D MotionI
0
  • Average velocity is a vector


vy, ave ? y / ?t
y(x) trajectory
y(t)
y
x
x(t)
vx, ave ? x / ?t
t
9
Physics 1710 Chapter 4 2-D MotionI
0
  • Instantaneous velocity is a vector
  • v lim ?t ? 0 ? r / ?t
  • This means the following
  • vx lim ?t ? 0 ? x / ?t dx /dt
  • vy lim ?t ? 0 ? y / ?t dy/dt

10
Physics 1710 Chapter 4 2-D MotionI
0
  • Instantaneous velocity is a vector


y
x
t
11
Physics 1710 Chapter 4 2-D MotionI
0
  • Average acceleration is a vector
  • aave ? v / ?t
  • This means the following
  • ax, ave ?vx / ?t
  • ay, ave ?vy / ?t .

12
Physics 1710 Chapter 4 2-D MotionI
0
  • Instantaneous acceleration is a vector
  • a lim ?t ? 0 ? v / ?t
  • This means the following
  • ax lim ?t ? 0 ? vx / ?t dvx /dt
  • ay lim ?t ? 0 ? vy / ?t dvy /dt
  • N.B.
  • The components are strictly segregated!

13
Physics 1710 Chapter 4 2-D MotionI
0
  • Motion in Two Dimensions
  • All the one dimensional kinematic equations can
    be generalized to two (or more) dimensions.
  • All the component equations obey the one
    dimensional kinematics separately.

14
Physics 1710 Chapter 4 3-D MotionI
0
  • Two two balls are simultaneously shot
    horizontally and dropped,which will the ground
    first? Why?

REVIEW
15
Physics 1710 Chapter 4 2-D MotionI
0
  • Vector kinematic equations (uniform a)
  • rfinal rinitial vinitial t ½ a t 2
  • vfinal vinitial a t

16
Physics 1710 Chapter 4 2-D MotionI
0
  • Projectile Motion
  • Horizontal acceleration
  • ax 0
  • ? vx, final vx, initial
  • xfinal x initial vx, initial t .
  • Vertical acceleration
  • ay -g
  • ? vy, final vy, initial - g t
  • yfinal y initial vy, initial t - ½ g t 2

17
Physics 1710 Chapter 4 2-D MotionII
0
  • Summary
  • Kinematics in two (or more) dimensions obeys the
    same 1- D equations in each component
    independently.
  • rfinal rinitial vinitial t ½ a t 2
  • vfinal vinitial a t
  • vx,final2 vx,initial 2 2 ax /?x
  • vy,final2 vy,initial 2 2 ay /?y
  • Projectiles follow a parabola y(x) A Bx
    Cx2
Write a Comment
User Comments (0)
About PowerShow.com