VSOP Monitoring Observations of 1928 738 - PowerPoint PPT Presentation

1 / 18
About This Presentation
Title:

VSOP Monitoring Observations of 1928 738

Description:

Relatively low redshift (z=0.3) core-dominated quasar. Well studied on pc and kpc scales ... Interesting claims of binary-black hole system causing a precessing ... – PowerPoint PPT presentation

Number of Views:19
Avg rating:3.0/5.0
Slides: 19
Provided by: david1956
Category:

less

Transcript and Presenter's Notes

Title: VSOP Monitoring Observations of 1928 738


1
VSOP Monitoring Observations of 1928738
  • D. Murphy, JPL
  • P. Edwards, ATNF
  • H. Hirabayashi, ISAS/JAXA

2
1928738 Introduction
  • Relatively low redshift (z0.3) core-dominated
    quasar
  • Well studied on pc and kpc scales
  • In S5 polar-cap survey
  • Interesting claims of binary-black hole system
    causing a precessing jet (Roos et al, 1993)
  • High ecliptic latitude (79.6 degrees)
  • Good source to monitor with VSOP
  • Always meets VSOP solar constraints
  • Always good 2-D VSOP UV-coverages
  • Undertook 8-epoch 5 GHz monitoring program

3
VSOP Observations and UV-coverages
  • Epoch Obscod Date Length (h) GRTs

No H ALCA Data (TZ recorder problem)
4
VSOP 1928738 5 GHz Images
  • scale 7.4/h pc/mas
  • v/c 18.7/h ? (mas/yr)
  • Ho 71 h km/s/Mpc, ?m0.3, ?v0.7

5
(No Transcript)
6
1928738 Ground-only 5 GHz Images
7
(No Transcript)
8
  • combine with other VLBI observations to
    constrain ejection times and proper motions
  • inner jet components (lt 5 mas from core) best
    studied using VSOP images

9
  • combine with other VLBI observations to
    constrain ejection times and proper motions
  • outer jet components (lt 5 mas from core) best
    studied using ground-only images

10
Fitted proper-motions and ejection dates
11
Precessing Jet Models
  • Various types are possible
  • Only going to consider ballistic models
  • Previous work on this Roos, Kaastra Hummel,
    ApJ, 409, 130 (1993) and other sources 3C279
    Abraham Carrara, ApJ, 496, 172 (1998) has
    assumed a constant jet velocity cone angle
  • We extend this geometry by introducing a variable
    cone angle due to orbital motion in a binary
    black hole (BBH) system

12
Our BBH Precessing Jet Model 1
  • BBH system
  • BH masses m1, m2 (m1 has jet)
  • BH orbital speeds/c ?1, ?2
  • BH orbital period Torbital
  • ?total ?jet ?orbital
  • (use SR for )
  • cos ? lt ?jet,unit,Lunitgt
  • cos ? lt ?total,unit, ?jet,unit gt
  • sin ?
  • (?orbital/ ?jet) cos ? (1tan2(?)cos2(?orbital))
    1/2
  • Previous work assumed
  • constant velocity cone angle
  • sin ? (?orbital/ ?jet) cos ? ? ? ltlt 1
  • didnt use SR to add velocities

m2
m1
13
Our BBH Precessing Jet Model 2
  • ?orbital 2?(tejection-t0)/Torbital ?0
  • ?PA PA - PA0
  • Model has 8 parameters
  • 2 speeds ?orbital, ?jet
  • 5 angles ?los,?L,?L,?0,PA0
  • 1 timescale Torbital
  • Fit apparent speeds, PAs, and ejection dates to
    get these 8 parameters

14
Best fit for all 8 parameters
15
Best fit for all 8 parameters variation or
parameters
16
1928738 Binary Black Hole Properties
  • From fitting Torbital 4.3/(1z) 3.31 years,
    ?1 0.019
  • Let ?sun Gmsun/c3 1.56 x 10-13 years
  • m1/msun (1/2?) (Torbital/?sun)?13(1m1/m2)
  • Unfortunately mass ratio m1/m2 cant be
    determined
  • For m1 m2
  • m1/msun 4.6 x 107
  • BBH separation 1.46 x 1016 cm ?1 c Torbital
  • ?gw ?13 million years
  • Also 1928738 jet lies close to the BBH orbital
    plane!
  • What about emission lines?

17
(No Transcript)
18
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com