Lecture Six Chapter 5: QuineMcCluskey Method - PowerPoint PPT Presentation

1 / 50
About This Presentation
Title:

Lecture Six Chapter 5: QuineMcCluskey Method

Description:

Lecture Six Chapter 5: QuineMcCluskey Method – PowerPoint PPT presentation

Number of Views:76
Avg rating:3.0/5.0
Slides: 51
Provided by: svprov
Category:

less

Transcript and Presenter's Notes

Title: Lecture Six Chapter 5: QuineMcCluskey Method


1
Lecture Six Chapter 5 Quine-McCluskey Method
Dr. S.V. Providence
COMP 370
2
Computer Minimization Techniques
  • Boolean Algebra
  • Karnaugh Maps
  • Quine-McCluskey Method

Dr. S.V. Providence
COMP 370
3
Boolean Algebra
  • Review of Boolean Postulates
  • Review of Boolean Identities
  • Example1
  • Example2

Dr. S.V. Providence
COMP 370
4
Review of Boolean Postulates
A B B A
A B B A
Commutative Laws
A (B C) (A B) (A C)
A (B C) (A B) (A C)
Distributive Laws (not like ordinary algebra)
1 A A
0 A A
Identity Elements
A
!A
0
A !A
1
Inverse Elements
A
A B A
A ( A B ) A
Absorption
Dr. S.V. Providence
COMP 370
5
Review Boolean Identities
!!A A
Involution
0 A 0, A 0 0
A 1 1, 1 A 1
Contradiction (always false)
Tautology (always true)
A A A
A A A
Idempotence
A (B C) (A B) C
0 A A
Associative Laws
!(A
B)
!A
!B
!(A
B)
!A
!B
DeMorgans Theorem
or
or
A NAND B !A
OR !B
A NOR B !A
AND !B
Dr. S.V. Providence
COMP 370
6
Example1
A
A B A
Proof
1.
A A B A 1 A B Identity
2.
A ( 1 B ) Distribution
3.
A 1 Identity
4.
A
7
Example2
(X Y) (!X Y) (X !X) (!X Y) (X
Y) (Y Y)
0 (!X Y) (X Y) Y
(!X X) Y
Y 1
Y Y
Proof
1.
(X Y) (!X Y) !!(X Y) (!X Y)
2.
!(!X !Y) (X !Y)
DeMorgans
3.
!(!X X) !Y
Distribution
4.
!1 !Y Identity
5.
!!Y Y Involution
Dr. S.V. Providence
COMP 370
8
Karnaugh Maps
  • A 2 Variable K - map
  • Review 3 Variable K - maps
  • Example1
  • Example2
  • Review 4 Variable K - maps
  • Example1
  • Example2
  • A 5 Variable K - map

Dr. S.V. Providence
COMP 370
9
2-Variable K -map
Y
0 1
X
m1
m0
0
m2
m3
1
X
Y
F(X,Y) ?(0,1,2,3)
Dr. S.V. Providence
COMP 370
10
3-Variable K -map
Y
YZ
00 01 11 10
X
m1
m2
m0
m3
0
m5
m6
m4
m7
1
X
Z
?(0,1,2,3,4,5,6,7)
Dr. S.V. Providence
COMP 370
11
Example1
F(X,Y,Z) ?(1,3,4,5,6,7)
Dr. S.V. Providence
COMP 370
12
Example1
YZ
00 01 11 10
X
1
1
0
1
1
1
1
1
F(X,Y,Z) ?(1,3,4,5,6,7)
Dr. S.V. Providence
COMP 370
13
Example1
YZ
00 01 11 10
X
1
1
0
1
1
1
1
1
F(X,Y,Z) ?(1,3,4,5,6,7) m1 m3 m4 m5
m6 m7 !X!YZ !XYZ X!Y!Z X!YZ
XY!Z XYZ
Dr. S.V. Providence
COMP 370
14
Example1
YZ
00 01 11 10
X
1
1
0
1
1
1
1
1
F(X,Y,Z) ?(1,3,4,5,6,7) m1 m3 m4 m5
m6 m7 !X!YZ !XYZ X!Y!Z X!YZ
XY!Z XYZ
Dr. S.V. Providence
COMP 370
15
Example1
YZ
00 01 11 10
X
1
1
0
1
1
1
1
1
F(X,Y,Z) X Z
Dr. S.V. Providence
COMP 370
16
Example2
F(X,Y,Z) ?(0,2,4,6)
Dr. S.V. Providence
COMP 370
17
Example2
YZ
00 01 11 10
X
0
1
1
1
1
1
F(X,Y,Z) ?(0,2,4,6)
Dr. S.V. Providence
COMP 370
18
Example2
YZ
00 01 11 10
X
0
1
1
1
1
1
F(X,Y,Z)
Dr. S.V. Providence
COMP 370
19
Example2
YZ
00 01 11 10
X
0
1
1
1
1
1
F(X,Y,Z) !Z
Dr. S.V. Providence
COMP 370
20
4-Variable K -map
Y
YZ
00 01 11 10
WX
m0
m1
m3
m2
00
m4
m5
m7
m6
01
X
m12
m13
m15
m14
11
W
10
m8
m9
m11
m10
Z
F(W,X,Y,Z) ?(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15)
Dr. S.V. Providence
COMP 370
21
Example1
F(W,X,Y,Z) ?(5,7,9,11,13,15)
Dr. S.V. Providence
COMP 370
22
Example1
Y
YZ
00 01 11 10
F(W,X,Y,Z) ?(5,7,9,11,13,15)
WX
00
01
1
1
X
1
1
11
W
10
1
1
Z
Dr. S.V. Providence
COMP 370
23
Example1
Y
YZ
00 01 11 10
F(W,X,Y,Z) X Z W Z (X W) Z
WX
00
01
1
1
X
1
1
11
W
10
1
1
Z
Dr. S.V. Providence
COMP 370
24
Example2
F(W,X,Y,Z) ?(2,3,6,7,8,10,11,12,14,15)
Dr. S.V. Providence
COMP 370
25
Example2
Y
YZ
F(W,X,Y,Z) ?(2,3,6,7,8,10,11,12,14,15)
00 01 11 10
WX
1
1
00
01
1
1
X
1
1
1
11
W
10
1
1
1
Z
Dr. S.V. Providence
COMP 370
26
Example2
Y
YZ
F(W,X,Y,Z) W !Z Y
00 01 11 10
WX
1
1
00
01
1
1
X
1
1
1
11
W
10
1
1
1
Z
Dr. S.V. Providence
COMP 370
27
5-Variable K -map
V0
V1
Y
Y
YZ
YZ
00
01
11
10
00
01
11
10
WX
WX
m17
m18
m1
m2
m16
m19
m0
m3
00
00
m21
m22
m20
m23
m4
m5
m7
m6
01
01
X
X
m28
m29
m31
m30
m12
m13
m15
m14
11
11
W
W
m25
m26
m9
m10
10
m24
m27
10
m8
m11
Z
Z
Dr. S.V. Providence
COMP 370
28
Quine-McCluskey Method
  • Prime Implicants Table 3 or 4 steps
  • Essential Prime Implicants Table

Dr. S.V. Providence
COMP 370
29
Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(5,7,9,11,13,15)
2
3
4
List minterms by the number of 1s it contains.
Dr. S.V. Providence
COMP 370
30
Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(5,7,9,11,13,15)
Dr. S.V. Providence
COMP 370
31
Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(5,7,9,11,13,15)
2
3
Enter combinations of minterms by the number of
1s it contains.
Dr. S.V. Providence
COMP 370
32
Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(5,7,9,11,13,15)
Check off elements used from Step 1.
Dr. S.V. Providence
COMP 370
33
Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(5,7,9,11,13,15)
Enter combinations of minterms by the number of
1s it contains.
Dr. S.V. Providence
COMP 370
34
Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(5,7,9,11,13,15)
The entries left unchecked are Prime Implicants.
Dr. S.V. Providence
COMP 370
35
Finding Essential Prime Implicants (EPIs)
Enter the Prime Implicants and their minterms.
Dr. S.V. Providence
COMP 370
36
Finding Essential Prime Implicants (EPIs)
Enter Xs for the minterms covered.
Dr. S.V. Providence
COMP 370
37
Finding Essential Prime Implicants (EPIs)
Circle Xs that are in a column singularly.
Dr. S.V. Providence
COMP 370
38
Finding Essential Prime Implicants (EPIs)
The circled Xs are the Essential Prime
Implicants, so we check them off.
Dr. S.V. Providence
COMP 370
39
Finding Essential Prime Implicants (EPIs)
We check off the minterms covered by each of the
EPIs.
Dr. S.V. Providence
COMP 370
40
Finding Essential Prime Implicants (EPIs)
EPIs
F X Z W Z (X W) Z
Dr. S.V. Providence
COMP 370
41
Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(2,3,6,7,8,10,11,12,14,15)
Dr. S.V. Providence
COMP 370
42
Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(2,3,6,7,8,10,11,12,14,15)
Dr. S.V. Providence
COMP 370
43
Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(2,3,6,7,8,10,11,12,14,15)
Dr. S.V. Providence
COMP 370
44
Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(2,3,6,7,8,10,11,12,14,15)
Dr. S.V. Providence
COMP 370
45
Finding Essential Prime Implicants (EPIs)
Dr. S.V. Providence
COMP 370
46
Finding Essential Prime Implicants (EPIs)
Dr. S.V. Providence
COMP 370
47
Finding Essential Prime Implicants (EPIs)
Dr. S.V. Providence
COMP 370
48
Finding Essential Prime Implicants (EPIs)
Dr. S.V. Providence
COMP 370
49
Finding Essential Prime Implicants (EPIs)
Dr. S.V. Providence
COMP 370
50
Finding Essential Prime Implicants (EPIs)
EPIs
F (W !Z) Y
Dr. S.V. Providence
COMP 370
Write a Comment
User Comments (0)
About PowerShow.com