Title: Lecture Six Chapter 5: QuineMcCluskey Method
1Lecture Six Chapter 5 Quine-McCluskey Method
Dr. S.V. Providence
COMP 370
2Computer Minimization Techniques
- Boolean Algebra
- Karnaugh Maps
- Quine-McCluskey Method
Dr. S.V. Providence
COMP 370
3Boolean Algebra
- Review of Boolean Postulates
- Review of Boolean Identities
- Example1
- Example2
Dr. S.V. Providence
COMP 370
4Review of Boolean Postulates
A B B A
A B B A
Commutative Laws
A (B C) (A B) (A C)
A (B C) (A B) (A C)
Distributive Laws (not like ordinary algebra)
1 A A
0 A A
Identity Elements
A
!A
0
A !A
1
Inverse Elements
A
A B A
A ( A B ) A
Absorption
Dr. S.V. Providence
COMP 370
5Review Boolean Identities
!!A A
Involution
0 A 0, A 0 0
A 1 1, 1 A 1
Contradiction (always false)
Tautology (always true)
A A A
A A A
Idempotence
A (B C) (A B) C
0 A A
Associative Laws
!(A
B)
!A
!B
!(A
B)
!A
!B
DeMorgans Theorem
or
or
A NAND B !A
OR !B
A NOR B !A
AND !B
Dr. S.V. Providence
COMP 370
6Example1
A
A B A
Proof
1.
A A B A 1 A B Identity
2.
A ( 1 B ) Distribution
3.
A 1 Identity
4.
A
7Example2
(X Y) (!X Y) (X !X) (!X Y) (X
Y) (Y Y)
0 (!X Y) (X Y) Y
(!X X) Y
Y 1
Y Y
Proof
1.
(X Y) (!X Y) !!(X Y) (!X Y)
2.
!(!X !Y) (X !Y)
DeMorgans
3.
!(!X X) !Y
Distribution
4.
!1 !Y Identity
5.
!!Y Y Involution
Dr. S.V. Providence
COMP 370
8Karnaugh Maps
- A 2 Variable K - map
- Review 3 Variable K - maps
- Example1
- Example2
- Review 4 Variable K - maps
- Example1
- Example2
- A 5 Variable K - map
Dr. S.V. Providence
COMP 370
92-Variable K -map
Y
0 1
X
m1
m0
0
m2
m3
1
X
Y
F(X,Y) ?(0,1,2,3)
Dr. S.V. Providence
COMP 370
103-Variable K -map
Y
YZ
00 01 11 10
X
m1
m2
m0
m3
0
m5
m6
m4
m7
1
X
Z
?(0,1,2,3,4,5,6,7)
Dr. S.V. Providence
COMP 370
11Example1
F(X,Y,Z) ?(1,3,4,5,6,7)
Dr. S.V. Providence
COMP 370
12Example1
YZ
00 01 11 10
X
1
1
0
1
1
1
1
1
F(X,Y,Z) ?(1,3,4,5,6,7)
Dr. S.V. Providence
COMP 370
13Example1
YZ
00 01 11 10
X
1
1
0
1
1
1
1
1
F(X,Y,Z) ?(1,3,4,5,6,7) m1 m3 m4 m5
m6 m7 !X!YZ !XYZ X!Y!Z X!YZ
XY!Z XYZ
Dr. S.V. Providence
COMP 370
14Example1
YZ
00 01 11 10
X
1
1
0
1
1
1
1
1
F(X,Y,Z) ?(1,3,4,5,6,7) m1 m3 m4 m5
m6 m7 !X!YZ !XYZ X!Y!Z X!YZ
XY!Z XYZ
Dr. S.V. Providence
COMP 370
15Example1
YZ
00 01 11 10
X
1
1
0
1
1
1
1
1
F(X,Y,Z) X Z
Dr. S.V. Providence
COMP 370
16Example2
F(X,Y,Z) ?(0,2,4,6)
Dr. S.V. Providence
COMP 370
17Example2
YZ
00 01 11 10
X
0
1
1
1
1
1
F(X,Y,Z) ?(0,2,4,6)
Dr. S.V. Providence
COMP 370
18Example2
YZ
00 01 11 10
X
0
1
1
1
1
1
F(X,Y,Z)
Dr. S.V. Providence
COMP 370
19Example2
YZ
00 01 11 10
X
0
1
1
1
1
1
F(X,Y,Z) !Z
Dr. S.V. Providence
COMP 370
204-Variable K -map
Y
YZ
00 01 11 10
WX
m0
m1
m3
m2
00
m4
m5
m7
m6
01
X
m12
m13
m15
m14
11
W
10
m8
m9
m11
m10
Z
F(W,X,Y,Z) ?(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15)
Dr. S.V. Providence
COMP 370
21Example1
F(W,X,Y,Z) ?(5,7,9,11,13,15)
Dr. S.V. Providence
COMP 370
22Example1
Y
YZ
00 01 11 10
F(W,X,Y,Z) ?(5,7,9,11,13,15)
WX
00
01
1
1
X
1
1
11
W
10
1
1
Z
Dr. S.V. Providence
COMP 370
23Example1
Y
YZ
00 01 11 10
F(W,X,Y,Z) X Z W Z (X W) Z
WX
00
01
1
1
X
1
1
11
W
10
1
1
Z
Dr. S.V. Providence
COMP 370
24Example2
F(W,X,Y,Z) ?(2,3,6,7,8,10,11,12,14,15)
Dr. S.V. Providence
COMP 370
25Example2
Y
YZ
F(W,X,Y,Z) ?(2,3,6,7,8,10,11,12,14,15)
00 01 11 10
WX
1
1
00
01
1
1
X
1
1
1
11
W
10
1
1
1
Z
Dr. S.V. Providence
COMP 370
26Example2
Y
YZ
F(W,X,Y,Z) W !Z Y
00 01 11 10
WX
1
1
00
01
1
1
X
1
1
1
11
W
10
1
1
1
Z
Dr. S.V. Providence
COMP 370
275-Variable K -map
V0
V1
Y
Y
YZ
YZ
00
01
11
10
00
01
11
10
WX
WX
m17
m18
m1
m2
m16
m19
m0
m3
00
00
m21
m22
m20
m23
m4
m5
m7
m6
01
01
X
X
m28
m29
m31
m30
m12
m13
m15
m14
11
11
W
W
m25
m26
m9
m10
10
m24
m27
10
m8
m11
Z
Z
Dr. S.V. Providence
COMP 370
28Quine-McCluskey Method
- Prime Implicants Table 3 or 4 steps
- Essential Prime Implicants Table
Dr. S.V. Providence
COMP 370
29Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(5,7,9,11,13,15)
2
3
4
List minterms by the number of 1s it contains.
Dr. S.V. Providence
COMP 370
30Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(5,7,9,11,13,15)
Dr. S.V. Providence
COMP 370
31Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(5,7,9,11,13,15)
2
3
Enter combinations of minterms by the number of
1s it contains.
Dr. S.V. Providence
COMP 370
32Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(5,7,9,11,13,15)
Check off elements used from Step 1.
Dr. S.V. Providence
COMP 370
33Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(5,7,9,11,13,15)
Enter combinations of minterms by the number of
1s it contains.
Dr. S.V. Providence
COMP 370
34Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(5,7,9,11,13,15)
The entries left unchecked are Prime Implicants.
Dr. S.V. Providence
COMP 370
35Finding Essential Prime Implicants (EPIs)
Enter the Prime Implicants and their minterms.
Dr. S.V. Providence
COMP 370
36Finding Essential Prime Implicants (EPIs)
Enter Xs for the minterms covered.
Dr. S.V. Providence
COMP 370
37Finding Essential Prime Implicants (EPIs)
Circle Xs that are in a column singularly.
Dr. S.V. Providence
COMP 370
38Finding Essential Prime Implicants (EPIs)
The circled Xs are the Essential Prime
Implicants, so we check them off.
Dr. S.V. Providence
COMP 370
39Finding Essential Prime Implicants (EPIs)
We check off the minterms covered by each of the
EPIs.
Dr. S.V. Providence
COMP 370
40Finding Essential Prime Implicants (EPIs)
EPIs
F X Z W Z (X W) Z
Dr. S.V. Providence
COMP 370
41Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(2,3,6,7,8,10,11,12,14,15)
Dr. S.V. Providence
COMP 370
42Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(2,3,6,7,8,10,11,12,14,15)
Dr. S.V. Providence
COMP 370
43Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(2,3,6,7,8,10,11,12,14,15)
Dr. S.V. Providence
COMP 370
44Finding Prime Implicants (PIs)
F(W,X,Y,Z) ?(2,3,6,7,8,10,11,12,14,15)
Dr. S.V. Providence
COMP 370
45Finding Essential Prime Implicants (EPIs)
Dr. S.V. Providence
COMP 370
46Finding Essential Prime Implicants (EPIs)
Dr. S.V. Providence
COMP 370
47Finding Essential Prime Implicants (EPIs)
Dr. S.V. Providence
COMP 370
48Finding Essential Prime Implicants (EPIs)
Dr. S.V. Providence
COMP 370
49Finding Essential Prime Implicants (EPIs)
Dr. S.V. Providence
COMP 370
50Finding Essential Prime Implicants (EPIs)
EPIs
F (W !Z) Y
Dr. S.V. Providence
COMP 370