Title: SEA CURRENT VORTEX SHEDDING INDUCED VIBRATION OF NEMO TOWER
1SEA CURRENT VORTEX SHEDDING INDUCED VIBRATION OF
NEMO TOWER
Workshop VLVnT2 Catania, November 9-12, 2005
F. Fossati, G. Fichera
Dipartimento di Ingegneria Industriale e
Meccanica (DIIM) University of Catania
2SCOPE OF WORK
- Structural Dynamic Response due to Vortex
shedding Induced Vibration (VIV) - Structural design optimization
3Vortex shedding induced Vibrations (VIV)
- VIV can affect flexible or moveable structures
subjected to water flow or wind flow, such as - Off-shore structures
- Marine risers
- Power submarine cables or overhead transmission
lines - Suspension Bridges
- Lattice structures
4Typical structures interested on VIV
5Typical structures interested on VIV
6Typical structures interested on VIV
7STATE OF THE ART
- Frequency domain methods energy balance
- Time domain methods (CFD, discrete vortex models)
8BACKGROUND
- Large amount of research activities on structural
dynamic response due to Vortex shedding Induced
Vibration (VIV) have been carried out - Research group University of Catania
Politecnico di Milano - Development of numerical approach based on a time
domain numerical model to evaluate VIV - Consultant activity for several applications
- ENEL (Italian National Electric Board) overhead
transmission lines - ENI-AGIP (Italian National Petroleum Board)
Offshore platforms drilling/production risers - STRETTO DI MESSINA Deck/Suspension cables
- PIRELLI Submarine power transmission cables
9CONTENTS
- Vortex shedding phenomena (VIV)
- NEMO Tower Structural dynamics modeling
- Frame Finite Element Model
- Tower Multi-body Model with rigid bodies
- Tower Mixed Multi-body / flexible Model
- Vortex shedding forces mathematical model
- Work in progress
10Vortex shedding
- Vortex-Induced Vibrations (VIV) are the primary
mode of fluid-structure interaction for bluff
body structures - Bluff bodies at moderate Reynolds numbers shed
fluid vortices at regular or irregular intervals,
producing fluctuating hydrodynamic forces
11Vortex shedding
Cross-flow oscillating force
V
Characteristic frequency
fS frequency (Hz) S Strouhal number 0.1850.2
(depending on Re) v flow velocity (m/s) d
cylinder dimeter (m)
12Vortex shedding Strouhal frequency
13Vortex shedding induced Vibrations (VIV)
m
14VORTEX SHEDDING NON LINEAR EFFECTS
- Lock-in range
- Vibration amplitude depending on fluid velocity
- Hysteretic behaviour
Lock-in range 0.75 vSt lt v lt 1.7 vSt
15Lock-in range
16Frequency lock-in
Lock-in range
17VIV
18FLUID STRUCTURE INTERACTION ANALYSIS MAIN STEPS
- NUMERICAL ANALYSIS
- Structure schematization
- Static analysis due to mean sea current induced
forces - Structure natural frequencies and vibration modes
evaluation - Vortex shedding forces modeling
- Dynamic analysis due to Vortex shedding induced
vibrations - EXPERIMENTAL MEASURES
- Full scale measurements on Tower Prototype
19NEMO Tower Numerical Model 1st step
- Each frame is considered as a rigid body with 6
d.o.f. - Frames are connected by means of Ropes modeled
using translational spring damper element - Aims of the model
- tower static equilibrium position calculation due
to weight and buoyancy forces (rope forces,
displacement at the top, etc.) - tower static equilibrium position calculation due
to sea current drag forces - Tower Natural frequencies/eigenmodes calculation
in the static equilibrium position neighborhood
20Frame FE model Inertial properties and buoyancy
Buoyancy -149.4 N
21Rigid multibody model static analysis
- Static equilibrium due to weight and buoyancy
forces - Calculation of rope tensions
nemo_static
22Rigid multibody model normal modes
- Calculation of global modes of the tower
23Rigid multibody model static analysis including
fluid drag forces
- Calculation of static equilibrium under weights,
hydrostatic forces and fluid drag forces - Drag forces calculated by using ESDU 81027 on
Lattice Structures - Constant flow velocity 0.1 m/s
24Rigid multibody model static analysis including
fluid drag forces
- Static equilibrium calculation at constant flow
velocity V0.1 m/s - Calculation of rope tensions
nemo_static_fluid
Ropes at the base of the tower
25Rigid multibody model static analysis including
fluid drag forces
- Main results with V 0.1 m/s
- Maximum displacement of the buoy along the flow
direction 13.5 m - Changing of tensions only in the ropes at the
tower base - The two windward ropes increase tension from 1800
to 3000 N - The two leeward ropes decrease tension from 1800
to 700 N
26NEMO Tower Numerical Model 2nd step
Tower mixed multi-body / flexible Model
- Frame 1 and 2 structures (starting from the tower
base) were introduced as flexible bodies using
Component Mode Synthesis from FE results - The ropes connecting the frames 1 and 2 were
modeled using finite elements - Aims of the model
- re-calculation of static equilibrium
- re-calculation of structure natural frequencies
and vibration modes including flexible modes
27Flexible multibody model Normal modes
- The global modes of the whole tower remain the
same
1st lateral 0.0081 Hz
1st vertical 0.2282 Hz
28Flexible multibody model Normal modes
1st mode of short ropes (4.06 Hz)
1st mode of long ropes (1.07 Hz)
29Flexible multibody model Normal modes
- Coupled modes of long ropes and short ropes
4.02 Hz
4. 20 Hz
30Flexible multibody model Normal modes
- Coupled modes of ropes and structures
4.46 Hz
4. 48 Hz
31THE EQUIVALENT OSCILLATOR
32THE EQUIVALENT OSCILLATOR
- Aerodynamic mass frequency depending on fluid
velocity according to Strouhal relationship - energy input capability (Raer)
- self limited vibrations
- Lock-in range
33THE EQUIVALENT OSCILLATOR
Equivalent oscillator parameters can be evaluated
using simple experimental tests using scaled
sectional model (wind tunnel/water tank)
34VIV ON COMPLETE STRUCTURE
NEMO TOWER F.E. MODEL
- Equivalent oscillators distribution
- Time domain model
35VIV ON COMPLETE STRUCTURE
FEM nodes
36ADVANTAGES
- Simple but sophisticated approach which takes
into account all the basic topic of vortex
shedding phenomena - Results allow to perform structure design
optimization in order to avoid VIV and to
determine the proper structural damping level
capable of avoiding lock-in - Full scale measurements are planned on Tower
Prototype - Results could be also useful in order to better
control evaluate bioluminescenza
37WORK IN PROGRESS
- Complete tower dynamic analyses simulations are
in progress - Results allow to perform structure design
optimization in order to avoid VIV and to
determine the proper structural damping level
capable of avoiding lock-in - Full scale measurements are planned on Tower
Prototype - Results could be also useful in order to better
control evaluate bioluminescenza
38Strategy of the research 1) channel
experimentation on rigid cylinder - smooth
cylinder - cylinder with vortex suppression
devices (ropes twisted around the
cable) o different rope/cable diameter
ratio o different pitch/twisting
direction o different damping ratioes
CableDynamics 1999 slide 38
39Strategy of the research (continued) 2) physical
modelling of the vortex shedding by means of the
equivalent oscillator
k, r contain both linear and non linear
terms. These have been identified by means of
Kalman Filtering
CableDynamics 1999 slide 39
40Strategy of the research (continued) 3) simulatio
n of the real cable behaviour by means of the
equivalent oscillators with the final
purpose a) to determine the structural damping
capable of avoiding lock-in b) to eventually
find the span critical length
CableDynamics 1999 slide 40
41PROPOSTE
- Prove in galleria per valutare il n di Strouhal
dei piani - Valutazione della velocità critica
- Valutazione delle ampiezze di vibrazione
- Verifica delle forze dovute alla corrente
- Integrazione del modello di calcolo con il
forzamento per distacco di vortici
42Distacco di Vortici Parametri significativi
Reynolds
Strouhal
Scrouton
43Il numero di Scrouton
m massa lineare del cilindro h smorzamento
adimensionale r densità del fluido D diametro
del cilindro
44Modalità di distacco vibrazioni in-line
Modo di distacco 2Salternati
Modo di distacco 2P simmetrici
45Forzamento In-line ampiezze di oscillazione
46Cilindro libero nello spazio
47Oscillatore equivalente equazioni del moto
- Le costanti KAcc, KAer etc. sono funzione di
velocità della corrente, lunghezza, diametro e di
parametri numerici identificati sulla base di
prove sperimentali
48IDENTIFIED SYSTEM
Natural frequency 3Hz, damping factor h 0.1
U/D
Hz
v/vs
v/vs
h
v/vs
49Loscillatore equivalente
- La massa aerodinamica MAer è identificata in
modo da vibrare, a cilindro fermo, alla frequenza
di Strouhal - Lelemento dissipativo Raer è negativo in modo da
introdurre energia nel sistema - Gli elementi elastici e dissipativi sono
non-lineari in modo da riprodurre le
caratteristiche non lineari del forzamento - Le forze sono locali, variano quindi da sezione a
sezione in funzione della velocità della corrente
e del diametro - Utente non deve prevedere il lock-in del riser o
di parte di esso
50Nel caso della struttura NEMO
- Si mettono in eccitazione I primi modi di
vibrare delle funi corte - Si mettono in eccitazione dal terzo al sesto
modo delle funi lunghe - Si mettono in eccitazione I primi modi
flessionali dei piani accoppiati a quelli di fune - Se la corrente fosse di minore intensità potrebbe
eccitare I primi modi di fune lunga
51Nel caso della struttura NEMO
- NON SAPPIAMO NULLA SUL COMPORTAMENTO DEL PIANO
- IPOTESI
- SI METTEREBBE IN ECCITAZIONE UN MODO GLOBALE DI
SBANDIERAMENTO - NECESSITA DI VALUTARE LA RISPOSTA AL DISTACCO DI
VORTICI DEL SINGOLO PIANO - VIBRAZIONI IN-LINE ???
52THE EQUIVALENT OSCILLATOR
53Risposta in frequenza di un sistema ad un grado
di libertà
54Distacco di Vortici Strutture interessate
55Distacco di Vortici Strutture interessate
56Distacco di Vortici Strutture interessate
57Component Mode Synthesis Normal modes of the
condensed structure
58FE model Free-Free Modal Analysis
59NEMO Tower Numerical Model
- Several steps have been followed
- Single Frame FE model (beam elements) in order
to have a detailed model able to - Calculation of inertial and stiffness
distribution - Calculation of material volume and fluid volume
- Static analysis and natural frequencies/eigenmodes
calculation - Modal condensation using Component Mode Synthesis
based on Craig-Bampton method in order to take
into account frames flexibility effects into
multi-body model of the Nemo tower with 16 floors
60NEMO Tower Numerical Model
- Linear FE model made of beam elements with rigid
connections and concentrated masses - Light model requiring short time simulation
- Aims of the model
- Calculation of inertial and stiffness
distribution - Calculation of material volume and fluid volume
- Static analysis and natural frequencies/eigenmodes
calculation - Modal condensation using Component Mode Synthesis
based on Craig-Bampton method in order to take
into account frames flexibility effects into
multi-body model of the Nemo tower with 16 floors
61Multibody model of the Nemo tower using rigid
bodies
- Each frame is considered as a rigid body with 6
dof in the space - Ropes modeled using translational spring damper
element with preload - Aims of the model
- static calculation of the all tower under weight
and hydrostatic forces (rope forces, displacement
at the top, etc.) - static calculation including fluid drag forces
due to different constant flow velocities - eigenmode calculation starting from static
equilibrium
62Natural frequencies of the ropes under static
tensions
- Calculation of natural frequencies of the ropes
under static tensions using rope theory