Aquatic Biodiversity - PowerPoint PPT Presentation

1 / 37
About This Presentation
Title:

Aquatic Biodiversity

Description:

Coral reefs form in clear, warm coastal waters of the tropics and subtropics. ... Benthos: bottom dwellers (barnacles, oysters) ... – PowerPoint PPT presentation

Number of Views:55
Avg rating:3.0/5.0
Slides: 38
Provided by: you26
Category:

less

Transcript and Presenter's Notes

Title: Aquatic Biodiversity


1
Chapter 6
  • Aquatic Biodiversity

2
Core Case StudyWhy Should We Care About Coral
Reefs?
  • Coral reefs form in clear, warm coastal waters of
    the tropics and subtropics.
  • Formed by massive colonies of polyps.

Figure 6-1
3
Fig. 6-1a, p. 126
4
Fig. 6-1b, p. 126
5
Core Case StudyWhy Should We Care About Coral
Reefs?
  • Help moderate atmospheric temperature by removing
    CO2 from the atmosphere.
  • Act as natural barriers that help protect 14 of
    the worlds coastlines from erosion by battering
    waves and storms.
  • Provide habitats for a variety of marine
    organisms.

6
AQUATIC ENVIRONMENTS
  • Saltwater and freshwater aquatic life zones cover
    almost three-fourths of the earths surface

Figure 6-2
7
AQUATIC ENVIRONMENTS
Figure 6-3
8
What Kinds of Organisms Live in Aquatic Life
Zones?
  • Aquatic systems contain floating, drifting,
    swimming, bottom-dwelling, and decomposer
    organisms.
  • Plankton important group of weakly swimming,
    free-floating biota.
  • Phytoplankton (plant), Zooplankton (animal),
    Ultraplankton (photosynthetic bacteria)
  • Necton fish, turtles, whales.
  • Benthos bottom dwellers (barnacles, oysters).
  • Decomposers breakdown organic compounds (mostly
    bacteria).

9
Life in Layers
  • Life in most aquatic systems is found in surface,
    middle, and bottom layers.
  • Temperature, access to sunlight for
    photosynthesis, dissolved oxygen content,
    nutrient availability changes with depth.
  • Euphotic zone (upper layer in deep water
    habitats) sunlight can penetrate.

10
SALTWATER LIFE ZONES
  • The oceans that occupy most of the earths
    surface provide many ecological and economic
    services.

Figure 6-4
11
The Coastal Zone Where Most of the Action Is
  • The coastal zone the warm, nutrient-rich,
    shallow water that extends from the high-tide
    mark on land to the gently sloping, shallow edge
    of the continental shelf.
  • The coastal zone makes up less than 10 of the
    worlds ocean area but contains 90 of all marine
    species.
  • Provides numerous ecological and economic
    services.
  • Subject to human disturbance.

12
The Coastal Zone
Figure 6-5
13
Marine Ecosystems
  • Scientists estimate that marine systems provide
    21 trillion in goods and services per year 70
    more than terrestrial ecosystems.

Figure 6-4
14
Fig. 6-6, p. 130
15
Estuaries and Coastal Wetlands Centers of
Productivity
  • Estuaries include river mouths, inlets, bays,
    sounds, salt marshes in temperate zones and
    mangrove forests in tropical zones.

Figure 6-7
16
Mangrove Forests
  • Are found along about 70 of gently sloping sandy
    and silty coastlines in tropical and subtropical
    regions.

Figure 6-8
17
Estuaries and Coastal Wetlands Centers of
Productivity
  • Estuaries and coastal marshes provide ecological
    and economic services.
  • Filter toxic pollutants, excess plant nutrients,
    sediments, and other pollutants.
  • Reduce storm damage by absorbing waves and
    storing excess water produced by storms and
    tsunamis.
  • Provide food, habitats and nursery sites for many
    aquatic species.

18
Rocky and Sandy Shores Living with the Tides
  • Organisms experiencing daily low and high tides
    have evolved a number of ways to survive under
    harsh and changing conditions.
  • Gravitational pull by moon and sun causes tides.
  • Intertidal Zone area of shoreline between low
    and high tides.

19
Rocky and Sandy Shores Living with the Tides
  • Organisms in intertidal zone develop specialized
    niches to deal with daily changes in
  • Temperature
  • Salinity
  • Wave action

Figure 6-9
20
Barrier Islands
  • Low, narrow, sandy islands that form offshore
    from a coastline.
  • Primary and secondary dunes on gently sloping
    sandy barrier beaches protect land from erosion
    by the sea.

Figure 6-10
21
Threats to Coral ReefsIncreasing Stresses
  • Biologically diverse and productive coral reefs
    are being stressed by human activities.

Figure 6-11
22
Threats to Coral ReefsIncreasing Stresses
Figure 6-12
23
Biological Zones in the Open SeaLight Rules
  • Euphotic zone brightly lit surface layer.
  • Nutrient levels low, dissolved O2 high,
    photosynthetic activity.
  • Bathyal zone dimly lit middle layer.
  • No photosynthetic activity, zooplankton and fish
    live there and migrate to euphotic zone to feed
    at night.
  • Abyssal zone dark bottom layer.
  • Very cold, little dissolved O2.

24
Effects of Human Activities on Marine Systems
Red Alert
  • Human activities are destroying or degrading many
    ecological and economic services provided by the
    worlds coastal areas.

Figure 6-13
25
FRESHWATER LIFE ZONES
  • Freshwater life zones include
  • Standing (lentic) water such as lakes, ponds, and
    inland wetlands.
  • Flowing (lotic) systems such as streams and
    rivers.

Figure 6-14
26
Lakes Water-Filled Depressions
  • Lakes are large natural bodies of standing
    freshwater formed from precipitation, runoff, and
    groundwater seepage consisting of
  • Littoral zone (near shore, shallow, with rooted
    plants).
  • Limnetic zone (open, offshore area, sunlit).
  • Profundal zone (deep, open water, too dark for
    photosynthesis).
  • Benthic zone (bottom of lake, nourished by dead
    matter).

27
Lakes Water-Filled Depressions
  • During summer and winter in deep temperate zone
    lakes the become stratified into temperature
    layers and will overturn.
  • This equalizes the temperature at all depths.
  • Oxygen is brought from the surface to the lake
    bottom and nutrients from the bottom are brought
    to the top.
  • What causes this overturning?

28
Lakes Water-Filled Depressions
Figure 6-15
29
Effects of Plant Nutrients on LakesToo Much of
a Good Thing
  • Plant nutrients from a lakes environment affect
    the types and numbers of organisms it can support.

Figure 6-16
30
Effects of Plant Nutrients on LakesToo Much of
a Good Thing
  • Plant nutrients from a lakes environment affect
    the types and numbers of organisms it can
    support.
  • Oligotrophic (poorly nourished) lake Usually
    newly formed lake with small supply of plant
    nutrient input.
  • Eutrophic (well nourished) lake Over time,
    sediment, organic material, and inorganic
    nutrients wash into lakes causing excessive plant
    growth.

31
Effects of Plant Nutrients on LakesToo Much of
a Good Thing
  • Cultural eutrophication
  • Human inputs of nutrients from the atmosphere and
    urban and agricultural areas can accelerate the
    eutrophication process.

32
Freshwater Streams and RiversFrom the Mountains
to the Oceans
  • Water flowing from mountains to the sea creates
    different aquatic conditions and habitats.

Figure 6-17
33
Case StudyDams, Wetlands, Hurricanes, and New
Orleans
  • Dams and levees have been built to control water
    flows in New Orleans.
  • Reduction in natural flow has destroyed natural
    wetlands.
  • Causes city to lie below sea-level (up to 3
    meters).
  • Global sea levels have risen almost 0.3 meters
    since 1900.

34
Freshwater Inland Wetlands Vital Sponges
  • Inland wetlands act like natural sponges that
    absorb and store excess water from storms and
    provide a variety of wildlife habitats.

Figure 6-18
35
Freshwater Inland Wetlands Vital Sponges
  • Filter and degrade pollutants.
  • Reduce flooding and erosion by absorbing slowly
    releasing overflows.
  • Help replenish stream flows during dry periods.
  • Help recharge ground aquifers.
  • Provide economic resources and recreation.

36
Impacts of Human Activities on Freshwater Systems
  • Dams, cities, farmlands, and filled-in wetlands
    alter and degrade freshwater habitats.
  • Dams, diversions and canals have fragmented about
    40 of the worlds 237 large rivers.
  • Flood control levees and dikes alter and destroy
    aquatic habitats.
  • Cities and farmlands add pollutants and excess
    plant nutrients to streams and rivers.
  • Many inland wetlands have been drained or filled
    for agriculture or (sub)urban development.

37
Impacts of Human Activities on Freshwater Systems
  • These wetlands have been ditched and drained for
    cropland conversion.

Figure 6-19
Write a Comment
User Comments (0)
About PowerShow.com