Title: A Graph Partitioning Algorithm by Node Separators
1A Graph Partitioning Algorithm by Node Separators
- Joseph W.H. Liu
- ACM Transactions on Mathematical Software, 1989
- Speaker Andy A.K Jeng
2Outline
- Problem definition - An example
- Applications
- Iterative Separator Improvement Scheme
- Bipartite graph matching
- Finding an initial separator
- Experimental results
- Reference list
3Introduction
- Definition node separator
- Given a connected and undirected graph G(V,E), a
node subset S is a node separator if the
subgraph induced by the nodes in V but not in S
has more than one connected component.
4An Example Node separator
5An Example Edge separator
6- Criteria of node separator
- For different classes of problems, the size of
what is regarded as good separators varies. - Any reasonable measurement involves
- (1) the size of separator
- (2) the size of the remaining connected
components
Authors The size of separator The size of remaining connected graphs
Lipton and Tarjan,1979 (8n)1/2 2n/3
Djidjev, 1982 (6n)1/2 (4n)1/2
7Applications
- Its fundamental importance lies in its connection
to the divide-and-conquer paradigm - Reordering for symmetric sparse matrices
- Nested dissection algorithm George 1973
- Node separator
- Layout of VLSI circuits Leiserson 1980
- Finding a construction to map graphs into layouts
in the most area-efficient way - Edge separator
8Reordering for symmetric sparse matrices
Input
9Iterative Separator Improvement Scheme
10Iterative Separator Improvement Scheme
11E2
E1
S - Y
Y
S
Questions (1)How to find a good initial
separator S ? (2)How to find a subset Y from
separator S ?
12(No Transcript)
13Bipartite graph matching
- Bipartite graph
- Matching
- Maximum matching
- Maximal matching
- Nodes a, e and g are exposed nodes.
- Augmenting path
d
a
e
b
f
c
g
14- A matching M in a bipartite graph H is maximum if
and only if there is no augmenting path in H with
respect to M. C. Berge, 1957. - J. E. Hopcroft, 1973, provided an n2.5
algorithm to find maximum matchings in Bipartite
graph.
d
a
e
b
f
c
g
Maximal matching
15- Let x be an exposed node, if there is no
augmenting path starting with x in H respect to
M, then there exists a subset Y containing the
node x such that Adjacent (Y) lt Y
L0 f L1 b, c L2 e, g
d
a
e
b
f
c
g
- Let M be a maximum matching of the bipartite
graph H, if x is an exposed node in H respect to
M, then there exists a subset Y containing the
node x such that Adjacent (Y) lt Y
16Finding an initial separator
17Finding an initial separator
- Minimum degree algorithm J.A. George, 1981
4
4
4
4
1
3
4
3
4
5
2
6
3
5
3
3
4
3
3
4
3
4
18Finding an initial separator
- Minimum degree algorithm J.A. George, 1981
4
4
4
4
3
4
3
7
6
5
3
3
4
3
6
4
3
4
19Finding an initial separator
- xj is the node with the i-th degree order
- Cj is a connected component in the subgraph
x1,x2,,xj that contains node xj - j maxj Ci lt n/2. Initial
separator adjacency (Cj)
18
13
17
19
12
22
1
3
4
5
16
7
2
14
11
9
20
8
6
15
10
20
20Experimental results (1)
Initial separator
Iterative Improvement Scheme
21Experimental results (2)
LS midlevel J.A. Geoger 1973
Iterative Improvement Scheme
22Experimental results (3)
Iterative Improvement Scheme
LS midlevel Initial separator
23Reference list
- Graph separators
- H.N. Djidjev, 1982, On the problem of
partitioning planar graphs. SIAM J. Algebraic
Discrete Methods. 3, 229-240. - R.J. Lipton and R.E. Tarjan, 1979, A separator
theorem for planar graphs, SIAM J. Appl. Math.
36, 177-189. - J.W.H Liu, 1989, A graph partitioning algorithm
by node separators. ACM Transactions on
Mathematical Software, Vol. 15, No. 3, 198-219. - B. W. Kernighan and R.M. Karp, 1970, An efficient
heuristic procedure for partitioning graphs. Bell
Syst. Tech. 49, 291-307. - Bipartite Graph matching
- J.E. Hopcroft and R.M Karp, 1973, An n(5/2)
algorithm for maximum matching in bipartite
graphs. SIAM J. Computer. 2, 225-231. - C. H. Papadimitriou and K. Steiglitz,
Combinatorial Optimization. Prentice-Hill,
Englewood Cliffs, N.J.
24References list (cont. )
- Minimum degree algorithm
- J.A. George and J.W.H. Liu, The evolution of the
minimum degree ordering algorithm. SIAM Rev. 31,
1-19. - D.J. Rose . A graph-theoretic study of the
numerical solution of sparse positive definite
systems of linear equations . In Graph Theory and
Computing, R. Read, Ed. Academic Press, Orlando,
Fla. 183-217. - Sparse matrix ordering
- J.A. George, 1973, Nested dissection of a regular
finite element mesh. SIAM J. Numer. Anal, 10,
345-363. - J.A. George and J.W. H. Liu, Computer solution of
Large Sparse positive Definite Systems
Prentice-Hall, Englewood Cliffs, N.J - VLSI layout
- C. Leiserson, 1980, An efficient graph layout for
VLSI. In Proceeding of the 21st Annual Symposium
on the Foundations of Computer Science, IEEE, New
York, 270-281.
25The END